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Goal

Embed a set of objects into a Euclidean space such that:

1. Distances conform to human perception
2. Multiple feature modalities are integrated coherently

3. We can extend to unseen data

Motivation: leverage existing technologies for Euclidean data



Example
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+ Features may not match human perception
+ Use human input to guide the embedding




Human input

+ Binary similarity can be ambiguous in multi-media data

+ Example:
SAMLE
€

* Quantifying similarity may also be difficult... how similar
are they?

Is Oasis similar to The Beatles, or not?




Relative comparisons

[Schultz and Joachims, 2004, Agarwal et al., 2007]

+ Instead, we ask which of two pairs is more similar:
(7,5) or (k,£)?
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(Oasis, Beatles, Oasis, Metallica)

+ Learn a map g from the data set &' to a Euclidean space
+ For each (/,/, k, ),

la(i) =gl < llg(k) — gl



Partial order

More similar

+ Relative comparisons should exhibit
global structure.

+ Collect comparisons into a directed graph C

+ Cycles must be broken by any embedding
+ Comparisons should describe a partial order
over X x X.

Less similar



Constraint graphs

» Force margins between distances:

19(7) = g)I1Z + ejxe < llg(k) — g(&)II?

* Represent eji, as edge weights

+ Graph representation lets us
+ detect inconsistencies (cycles)
* prune redundancies by fransitive reduction
+ simplify: focus on meaningful constraints







Constraint simplification



Margin-preserving embeddings

« Claim: There exists g : X — R~ such that
all margins are preserved, and for all i#j:

1< )1g(i) — g()ll < V/(4n + 1)(diam(C) + 1)
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* Reduction via constant-shift embedding [Roth et al., 2003]
*+ Constraint diameter bounds embedding diameter
» May produce artificially high-dimensional embeddings



Dimensionality reduction

We show that it's NP-hard to minimize
dimensionality for POE

* Instead, optimize a convex objective that prefers
low-dimensional solutions

* Assume objects are dissimilar, unless otherwise
informed

Adapt MVU [Weinberger et al., 2004]:
+ Maximize all distances
» Diameter bound ensures that a solution exists
* Respect all partial order constraints




Partial Order Embedding (SDP)

* Input: n objects X', margin-weighted constraints C
* Output: g: X — R"

Vari
Tg())( Tr(A) (Variance)

d(i,j) < O(n-diam(C)) (Diameter)
d(i,f) + ejke < d(k, 1) (Margins)

> Aj=0 (Centering)
i

d(i,j) = A+ Aj — 2A; (Distance?)

- Decompose A= VAVT = g(i) = (AV2VT),



Out-of-sample extension: kernels

* How can we extend embeddings to unseen data?
+ Learn a linear projection from a feature space

» Parameterization:
g(x) = NKx (Kx = x column of K)

- Learn N by solving an SDP over W = NTN > 0

* PO constraints may be impossible to satisfy:
+ Soften ordering constraints



Multi-kernel embedding

+ Concatenate linear projections from m feature spaces:

¢(1) N(l)

Feature space m

Input space

— 9(z) =

NO KL
N@KP

Nm) g m)
Output space

« NOs are jointly optimized by SDP to form the space



MK-POE

zm: Tr (K(P> W<P)K(P>) 4Ty (W(p) K(p))

max
W=0,£>0
p=1
_ ﬁz
c
s.t
Vi,je X d(i,j) < O(n-diam(C))
v(i,j, k,£) e C d(i,j) + ejke < d(k,€) +

d(i) ié (K — k@) W) (kP — k)



Experiment 1: Human perception
Data [Agarwal et al., 2007]

+ 55 images of 3D rabbits with varying surface reflectance
+ 13049 human perception measurements: (/,j, i, k)

Constraint processing

+ Random sampling to achieve a maximal DAG
» Transitive reduction to eliminate redundancies
13000 — 9000 constraints

Final constraint graph

+ Unit margins

n‘ v :’)' ;s \r.!‘ .‘ %
+ Diameter = 55 Eom? o R



Experiment 1 results

POE (Top 2 PCA)
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Experiment 2: Multi-kernel

Data [Geusebroek et al., 2005]

* 10 classes from ALOI

* 10 images from each class,
varying out-of-plane rotation

+ Constraints generated by a
label taxonomy

Kernels

+ Grayscale dot product

* RBF of R,G,B, and grayscale
histograms

Diagonally-constrained N: SDP=-LP
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Experiment 2 results

Sum-kernel space Learned embedding
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Experiment 2 kernel comparison

% Constraints satisfied

| Kernel | Native | Optimized |
Dot product 0.83 0.85

Red 0.63 0.63

Green 0.65 0.67

Blue 0.77 0.83

Gray 0.68 0.69

Unweighted sum 0.76 0.77

Multi — 0.95




Experiment 3: Out-of-sample
Goal

* Predict comparsions (i, /, i, k) with i out of sample

Data

* 412 popular artists (aset400)
[Ellis et al., 2002]

+ 10-fold cross-validation
* ~6300 human-derived training constraints
* Mean diameter ~30 (over CV folds)

Features: TFIDF/cosine kernels
» Tags: 7737 words

(e.g., rock, piano, female vocals) lQSt.fm

* Biographies: 16753 words



Experiment 3 results

Prediction accuracy

= Native
m Optimized

0.776 0.790
0.705 0.705

0.640

Dol Random

Tags Biography Tags+Bio

Note: test comparisons are not internally consistent



Conclusion

+ We developed the partial order embedding framework

+ Simplifies relative comparison embeddings
+ Enables more careful constraint processing

» Graph manipulations can increase embedding robustness

+ Derived a novel multiple kernel learning technique
+ Widely applicable to metric learning problems



Thanks!

Questions?
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