Structured training for large-vocabulary chord recognition

Brian McFee* & Juan Pablo Bello

Small chord vocabularies

Ν				
C:maj	C:min			
C#:maj	C#:min			
D:maj	D:min			
B:maj	B:min			

- Typically a supervised learning problem
 - $\circ \qquad \mathsf{Frames} \to \mathsf{chord} \ \mathsf{labels}$
- **1-of-K** classification models are common
 - \circ 25 classes: N + (12 × min) + (12 × maj)
 - Hidden Markov Models, Deep convolutional networks, etc.
 - Optimize accuracy, log-likelihood, etc.

Small chord vocabularies

Ν				
C:maj	C:min			
C#:maj	C#:min			
D:maj	D:min			
B:maj	B:min			

- Typically a supervised learning problem
 - \circ Frames \rightarrow chord labels
- **1-of-K** classification models are common
 - \circ 25 classes: N + (12 × min) + (12 × maj)
 - Hidden Markov Models, Deep convolutional networks, etc.
 - Optimize accuracy, log-likelihood, etc.
- Implicit training assumption:

All mistakes are equally bad

Large chord vocabularies

Chord quality	Frequency
maj	52.53%
min	13.63%
7	10.05%
hdim7	0.17%
dim7	0.07%
minmaj7	0.04%

Distribution of the 1217 dataset

- Classes are **not well-separated**
 - C:7 = C:maj + m7
 - C:sus4 vs. F:sus2
- Class distribution is **non-uniform**

Rare classes are hard to model

Some mistakes are better than others

Some mistakes are better than others

This implies that chord space is *structured!*

C:7

Ve

Our contributions

• Deep learning architecture to **exploit structure** of chord symbols

Improve accuracy in rare classes
Preserve accuracy in common classes

• Bonus: package is online for you to use!

• All classification models need a finite, canonical label set

- All classification models need a finite, canonical label set
- Vocabulary simplification process:
 - a. Ignore inversions

- All classification models need a finite, canonical label set
- Vocabulary simplification process:
 - a. Ignore inversions
 - b. Ignore added and suppressed notes

G♭:9(*5)/3 G♭:9(*5) G♭:9

- All classification models need a finite, canonical label set
- Vocabulary simplification process:
 - a. Ignore inversions
 - b. Ignore added and suppressed notes
 - c. Template-match to nearest quality

• All classification models need a finite, canonical label set

G ♭ :9(*5)

G b :7

F♯:7

G b :9

- Vocabulary simplification process:
 - a. Ignore inversions

G ♭ :9(*5)/3

- b. Ignore added and suppressed notes
- c. Template-match to nearest quality
- d. Resolve enharmonic equivalences

• All classification models need a finite, canonical label set

G b :9(*5)

- Vocabulary simplification process:
 - a. Ignore inversions

G b :9(*5)/3

- b. Ignore added and suppressed notes
- c. Template-match to nearest quality
- d. Resolve enharmonic equivalences

G b :7

F♯:7

G b :9

$14 \times 12 + 2 = 170$ classes

	min	maj	dim	aug	min6	maj6	min7	minmaj7	maj7	7	dim7	hdim7	sus2	sus4
С														
C#														
В														

14 qualities

No chord (e.g., silence)

Ν

Х

Out of gamut (e.g., power chords)

Structural encoding

- Represent chord labels as binary encodings
- Encoding is **lossless*** and **structured**:
 - **Similar chords** with **different labels** will have **similar encodings**
 - Dissimilar chords will have dissimilar encodings
- Learning problem:
 - Predict the **encoding** from audio
 - Learn to decode into chord labels

* up to octave-folding

The big idea

• Jointly estimate **structured encoding** AND **chord labels**

- Db:maj(9)/3 Simplification C#:maj root C D E F G A B N Encoding pitches bass
- Full objective = root loss + pitch loss + bass loss + decoder loss

Model architectures

- Input: constant-Q spectral patches
- Per-frame outputs:

Ο

Ο

0

Ο

Root	[multiclass, 13]
Pitches	[multilabel, 12]
Bass	[multiclass, 13]
Chords	[multiclass, 170]

- Convolutional-recurrent architecture (encoder-decoder)
- End-to-end training

Encoder architecture

Suppress transients

Encode frequencies

Contextual smoothing

Chords = Logistic regression from encoder state

Frames are independently decoded:

 $y(t) = \operatorname{softmax}(W h(t) + \beta)$

Chords = Logistic regression from encoder state Decoding = GRU + LR

Frames are recurrently decoded: $h_2(t) = Bi-GRU[h](t)$ $y(t) = softmax(Wh_2(t) + \beta)$

Frames are independently decoded with structure:

 $\mathbf{y(t)} = \operatorname{softmax}(W_r \mathbf{r(t)} + W_p \mathbf{p(t)} + W_b \mathbf{b(t)} + W_h h(t) + \boldsymbol{\beta})$

What about root bias?

- Quality and root should be independent
- But the data is **inherently biased**
- Solution: data augmentation!
 - muda [McFee, Humphrey, Bello 2015]
 - Pitch-shift the audio and annotations simultaneously
- Each training track \rightarrow ± 6 semitone shifts
 - All qualities are observed in all root positions
 - \circ All roots, pitches, and bass values are observed

Evaluation

- 8 configurations
 - ± data augmentation
 - ± structured training
 - 1 vs. 2 recurrent layers
- 1217 recordings (Billboard + Isophonics + MARL corpus)
 - 5-fold cross-validation
- Baseline models:
 - DNN [Humphrey & Bello, 2015]
 - KHMM [Cho, 2014]

- CR1: 1 recurrent layer
- CR2: 2 recurrent layers
- +A: data augmentation
- +S: structure encoding

Results

Data augmentation (+A) is necessary to match baselines.

CR1: 1 recurrent layer

- CR2: 2 recurrent layers
- +A: data augmentation
- +S: structure encoding

Results

Structured training (+S) and deeper models improve over baselines.

Results

+S: structure encoding

Results

CR1: 1 recurrent layer

- CR2: 2 recurrent layers
- +A: data augmentation
- +S: structure encoding

Error analysis: quality confusions

Summary

• Structured training helps

• Deeper is better

Data augmentation is critical
pip install muda

- Rare classes are still hard
 - \circ We probably need new data

Thanks!

• Questions?

- Implementation is online
 - <u>https://github.com/bmcfee/ismir2017_chords</u>
 - pip install crema

brian.mcfee@nyu.edu

https://bmcfee.github.io/

Extra goodies

Error analysis: CR2+S+A vs CR2+A

Learned model weights

• Layer 1: Harmonic saliency

• Layer 2: Pitch filters (sorted by dominant frequency)

Training details

- Keras / TensorFlow + pescador
- ADAM optimizer
- Early stopping @20, learning rate reduction @10
 - Determined by decoder loss
- 8 seconds per patch
- 32 patches ber batch
- 1024 batches per epoch

Inter-root confusions

Inversion estimation

- For each detected chord segment
 - \circ Find the most likely bass note
 - \circ If that note is within the detected quality, predict it as the inversion

- Implemented in the crema package
- Inversion-sensitive metrics ~1% lower than inversion-agnostic

Pitches as chroma

