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Small chord vocabularies ● Typically a supervised learning problem

○ Frames → chord labels

● 1-of-K classification models are common

○ 25 classes: N + (12 ⨉ min) + (12 ⨉ maj)

○ Hidden Markov Models, Deep convolutional networks, etc.

○ Optimize accuracy, log-likelihood, etc.
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Small chord vocabularies ● Typically a supervised learning problem

○ Frames → chord labels

● 1-of-K classification models are common

○ 25 classes: N + (12 ⨉ min) + (12 ⨉ maj)

○ Hidden Markov Models, Deep convolutional networks, etc.

○ Optimize accuracy, log-likelihood, etc.

● Implicit training assumption:

    All mistakes are equally bad
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Large chord vocabularies
● Classes are not well-separated

○ C:7 = C:maj + m7

○ C:sus4 vs.  F:sus2

● Class distribution is non-uniform

● Rare classes are hard to model

Chord quality Frequency

maj 52.53%

min 13.63%

7 10.05%

...

hdim7 0.17%

dim7 0.07%

minmaj7 0.04%

Distribution of the 1217 dataset



Some mistakes are better than others

Very bad Not so bad



Some mistakes are better than others

Very bad Not so bad
This implies that chord 

space is structured!



Our contributions

● Deep learning architecture to 
exploit structure of chord symbols

● Improve accuracy in rare classes
Preserve accuracy in common classes

● Bonus: package is online for you to use!



Chord simplification

● All classification models need a finite, canonical label set
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Chord simplification

● All classification models need a finite, canonical label set

● Vocabulary simplification process:
a. Ignore inversions
b. Ignore added and suppressed notes
c. Template-match to nearest quality
d. Resolve enharmonic equivalences

Simplification is lossy!
(but all chord models do it)



14 ⨉ 12 + 2 = 170 classes

min maj dim aug min6 maj6 min7 minmaj7 maj7 7 dim7 hdim7 sus2 sus4

C

C#

...

B

N No chord (e.g., silence)

X Out of gamut (e.g., power chords)

14 qualities



Structural encoding

● Represent chord labels as binary encodings

● Encoding is lossless* and structured:

○ Similar chords with different labels will have similar encodings

○ Dissimilar chords will have dissimilar encodings

● Learning problem:
○ Predict the encoding from audio
○ Learn to decode into chord labels

* up to octave-folding



The big idea
● Jointly estimate structured encoding AND chord labels

● Full objective = root loss + pitch loss + bass loss + decoder loss



Model architectures
● Input: constant-Q spectral patches

● Per-frame outputs:
○ Root                         [multiclass, 13]
○ Pitches                   [multilabel, 12]
○ Bass                         [multiclass, 13]
○ Chords                    [multiclass, 170]

● Convolutional-recurrent architecture
(encoder-decoder)

● End-to-end training



Encoder architecture

Suppress transients     Encode frequencies Contextual smoothing

Hidden state at 
frame t:

h(t) ∊ [-1, +1]D



Decoder architectures

Chords = Logistic regression from encoder state

Frames are independently decoded:

y(t) = softmax(W h(t) + β)



Decoder architectures

Chords = Logistic regression from encoder state

Decoding = GRU + LR

Frames are recurrently decoded:

h2(t) = Bi-GRU[h](t)

                  y(t) = softmax(W h2(t) + β)



Decoder architectures

Chords = Logistic regression from encoder state

Decoding = GRU + LR

Chords = LR from encoder state + root/pitch/bass

Frames are independently decoded with structure:

y(t) = softmax(Wr r(t) + Wp p(t) + Wb b(t) + Wh h(t) + β)



Decoder architectures

Chords = Logistic regression from encoder state

Decoding = GRU + LR

Chords = LR from encoder state + root/pitch/bass

All of the above



What about root bias?

● Quality and root should be independent

● But the data is inherently biased

● Solution: data augmentation! 
○ muda [McFee, Humphrey, Bello 2015]
○ Pitch-shift the audio and annotations simultaneously

● Each training track → ± 6 semitone shifts
○ All qualities are observed in all root positions
○ All roots, pitches, and bass values are observed

http://photos.jdhancock.com/photo/2012-09-28-001422-big-data.html



Evaluation

● 8 configurations

○ ± data augmentation

○ ± structured training

○ 1 vs. 2 recurrent layers

● 1217 recordings
(Billboard + Isophonics + MARL corpus)

○ 5-fold cross-validation

● Baseline models:

○ DNN       [Humphrey & Bello, 2015]

○ KHMM   [Cho, 2014]



Results

Data augmentation (+A) is necessary to match baselines.

CR1:   1 recurrent layer

CR2:   2 recurrent layers

+A:      data augmentation

+S:      structure encoding



Results

Structured training (+S) and deeper models improve over baselines.
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Results

Improvements are bigger on the harder metrics
(7ths and tetrads)

CR1:   1 recurrent layer

CR2:   2 recurrent layers

+A:      data augmentation

+S:      structure encoding



Results

Substantial gains in maj/min
and MIREX metrics

CR2+S+A wins on all metrics

CR1:   1 recurrent layer

CR2:   2 recurrent layers

+A:      data augmentation

+S:      structure encoding



Error analysis: quality confusions

Errors tend toward simplification

Reflects maj/min bias in training data

Simplified vocab. accuracy: 63.6%



Summary

● Structured training helps

● Deeper is better

● Data augmentation is critical
○ pip install muda

● Rare classes are still hard
○ We probably need new data



Thanks!
● Questions?

● Implementation is online
○ https://github.com/bmcfee/ismir2017_chords
○ pip install crema

brian.mcfee@nyu.edu

https://bmcfee.github.io/

https://github.com/bmcfee/ismir2017_chords
mailto:brian.mcfee@nyu.edu
https://bmcfee.github.io/


Extra goodies



Error analysis: CR2+S+A vs CR2+A

Reduction of confusions to major

Improvements in rare classes:
aug, maj6, dim7, hdim7, sus4



Learned model weights

● Layer 1: Harmonic saliency

● Layer 2: Pitch filters (sorted by dominant frequency)



Training details ● Keras / TensorFlow + pescador

● ADAM optimizer

● Early stopping @20, learning rate reduction @10
○ Determined by decoder loss

● 8 seconds per patch

● 32 patches ber batch

● 1024 batches per epoch



Inter-root confusions

Confusions primarily toward P4/P5



Inversion estimation

● For each detected chord segment
○ Find the most likely bass note

○ If that note is within the detected quality, predict it as the inversion

● Implemented in the crema package

● Inversion-sensitive metrics ~1% lower than inversion-agnostic



Pitches as chroma


