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Modeling music is hard!

❏ Musical concepts are necessarily complex

❏ Complex concepts require big models

❏ Big models need big data!

❏ … but good data is hard to find

https://commons.wikimedia.org/wiki/File:Music_Class_at_St_Elizabeths_Orphanage_New_Orleans_1940.jpg



http://photos.jdhancock.com/photo/2012-09-28-001422-big-data.html
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Note: test data remains unchanged



Deforming inputs and outputs
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Deforming inputs and outputs
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Some deformations 
may change labels!
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The big idea
Musical data augmentation applies to both

input (audio) and output (annotations)



https://www.flickr.com/photos/shreveportbossier/6015498526

… but how will we keep everything contained?… but how will we keep everything contained?



JAMS
❏ A simple container for all annotations

❏ A structure to store (meta) data

❏ But v0.1 lacked a unified, cross-task interface
JSON Annotated Music Specification 
[Humphrey et al., ISMIR 2014]



Pump up the JAMS:
v0.2.0

❏ Unified annotation interface

❏ DataFrame backing for easy manipulation

❏ Query engine to filter annotations by type 

❏ chord, tag, beat, etc.

❏ Per-task schema and validation

chord

segment

beat



Musical data augmentation

In [1]: import muda



Deformer architecture

transform(input JAMS J_orig)

1. For each state S:
a. J := copy J_orig
b. modify J.audio by S
c. modify J.metadata by S
d. Deform each annotation by S
e. Append S to J.history
f. yield J
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Deformer architecture

transform(input JAMS J_orig)

1. For each state S:
a. J := copy J_orig
b. modify J.audio by S
c. modify J.metadata by S
d. Deform each annotation by S
e. Append S to J.history
f. yield J
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Deformation objectInput JAMS Output JAMS❏ State encapsulates a deformation’s parameters

❏ Iterating over states implements 1-to-Many mapping

❏ Examples:

❏ pitch_shift ∊ [-2, -1, 0, 1, 2]

❏ time_stretch ∊ [0.8, 1.0, 1.25]

❏ background noise ∊ sample library



Deformer architecture

transform(input JAMS J_orig)

1. For each state S:
a. J := copy J_orig
b. modify J.audio by S
c. modify J.metadata by S
d. Deform each annotation by S
e. Append S to J.history
f. yield J
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Deformation objectInput JAMS Output JAMS❏ Audio is temporarily stored within the JAMS object

❏ All deformations depend on the state S

❏ All steps are optional



Deformer architecture

transform(input JAMS J_orig)

1. For each state S:
a. J := copy J_orig
b. modify J.audio by S
c. modify J.metadata by S
d. Deform each annotation by S
e. Append S to J.history
f. yield J
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Deformation objectInput JAMS Output JAMS❏ Each deformer knows how to handle different annotation types, e.g.:

❏ PitchShift.deform_chord()
❏ PitchShift.deform_pitch_hz()
❏ TimeStretch.deform_tempo()
❏ TimeStretch.deform_all()

❏ JAMS makes it trivial to filter annotations by type

❏ Multiple deformations may apply to a single annotation



Deformer architecture

transform(input JAMS J_orig)

1. For each state S:
a. J := copy J_orig
b. modify J.audio by S
c. modify J.metadata by S
d. Deform each annotation by S
e. Append S to J.history
f. yield J
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Deformation objectInput JAMS Output JAMS❏ This provides data provenance

❏ All deformations are fully reproducible

❏ The constructed JAMS contains all state and object parameters



Deformer architecture

transform(input JAMS J_orig)

1. For each state S:
a. J := copy J_orig
b. modify J.audio by S
c. modify J.metadata by S
d. Deform each annotation by S
e. Append S to J.history
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Deformation pipelines

for new_jam in jam_pipe(original_jam):
process(new_jam)
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Example application
instrument recognition in mixtures

https://commons.wikimedia.org/wiki/File:Instruments_on_stage.jpg



Data: MedleyDB
❏ 122 tracks/stems, mixed instruments

[Bittner et al., ISMIR 2014]

❏ 75 unique artist identifiers

❏ We model (the top) 15 instrument classes

❏ Time-varying instrument activation labels

http://medleydb.weebly.com/ 

http://medleydb.weebly.com/
http://medleydb.weebly.com/


Convolutional model
❏ Input

a. ~1sec log-CQT patches 
b. 36 bins per octave
c. 6 octaves (C2-C8)

❏ Convolutional layers
a. 24x ReLU, 3x2 max-pool
b. 48x ReLU, 1x2 max-pool

❏ Dense layers
a. 96d ReLU, dropout=0.5
b. 15d sigmoid, ℓ2 penalty
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~1.7 million parameters



Experiment

❏ Five augmentation conditions:
 N Baseline
 P pitch shift [+- 1 semitone]
 PT + time-stretch [√2, 1/√2]
 PTB ++ background noise [3x noise]

 PTBC +++ dynamic range compression [2x]

❏ 1 input ⇒ up to 108 outputs

❏ 15x (artist-conditional) 4:1 shuffle-splits

❏ Predict instrument activity on 1sec clips

How does training with data 
augmentation impact model stability?

Note: test data remains unchanged



Results across all categories

❏ Pitch-shift improves model stability

❏ Additional transformations don’t 
seem to help (on average)

❏ But is this the whole story?

Label-ranking average precision



Results by category

❏ All augmentations help for most classes

❏ synthesizer may be ill-defined

❏ Time-stretch can hurt high-vibrato instruments

Baseline (no augmentation)

Change in F1-score



Conclusions

❏ We developed a general framework for musical data augmentation

❏ Training with augmented data can improve model stability

❏ Care must be taken in selecting deformations

❏ Implementation is available at https://github.com/bmcfee/muda 
soon: pip install muda

https://github.com/bmcfee/muda


Thanks!
brian.mcfee@nyu.edu

https://bmcfee.github.io 

https://github.com/bmcfee/muda
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