
IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 1

Adaptive pooling operators for weakly labeled
sound event detection

Brian McFee1,3, Justin Salamon1,2, Juan Pablo Bello1 Senior Member, IEEE

Copyright c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.

Abstract—Sound event detection (SED) methods are tasked
with labeling segments of audio recordings by the presence of
active sound sources. SED is typically posed as a supervised
machine learning problem, requiring strong annotations for the
presence or absence of each sound source at every time instant
within the recording. However, strong annotations of this type are
both labor- and cost-intensive for human annotators to produce,
which limits the practical scalability of SED methods.

In this work, we treat SED as a multiple instance learning
(MIL) problem, where training labels are static over a short
excerpt, indicating the presence or absence of sound sources
but not their temporal locality. The models, however, must
still produce temporally dynamic predictions, which must be
aggregated (pooled) when comparing against static labels during
training. To facilitate this aggregation, we develop a family
of adaptive pooling operators—referred to as auto-pool—which
smoothly interpolate between common pooling operators, such
as min-, max-, or average-pooling, and automatically adapt
to the characteristics of the sound sources in question. We
evaluate the proposed pooling operators on three datasets, and
demonstrate that in each case, the proposed methods outperform
non-adaptive pooling operators for static prediction, and nearly
match the performance of models trained with strong, dynamic
annotations. The proposed method is evaluated in conjunction
with convolutional neural networks, but can be readily applied
to any differentiable model for time-series label prediction. While
this article focuses on SED applications, the proposed methods
are general, and could be applied widely to MIL problems in
any domain.

Index Terms—Sound event detection, machine learning, mul-
tiple instance learning, deep learning

I. INTRODUCTION

SOUND event detection (SED) is the task of automatically
identifying the occurrence of specific sounds in continuous

audio recordings. Given a target set of sound sources of
interest, the goal is to return the start time, end time, and
label (the class) of every sound event in the target set. SED is
a key component in a number of technologies and applications
emerging from the recent advances in machine learning and
Internet of Things (IoT) technology such as noise monitor-
ing for smart cities [1], bioacoustic species and migration
monitoring [2–4], self-driving cars [5], surveillance [6, 7],
healthcare [8], and large-scale multimedia indexing [9].

Modern SED systems are typically implemented by super-
vised machine learning algorithms, which are used to learn the
parameters of a function to map a sequence of audio data to a
sequence of event labels. Because SED systems are required to

1 Music and Audio Research Laboratory
2 Center for Urban Science and Progress
3 Center for Data Science
New York University, New York, USA

produce dynamic (time-varying) label estimates at each instant
within a recording, they are often trained from strongly labeled
training data, where the presence or absence of each source at
each instant is known. While strongly labeled data is ideal for
model development and evaluation, it is also costly to acquire.
As SED systems adopt data-intensive approaches—such as
convolutional or recurrent neural networks—the availability
and cost of strongly annotated data become serious impedi-
ments to system development.

If we are to accurately evaluate the dynamic performance
of SED systems, strongly labeled data is clearly necessary,
and it is natural to assume that the same should hold for
model development. However, if one has access to a larger
pool of data that has only been weakly labeled at a coarse
time resolution (e.g., 10 second clips), it may be possible to
learn a high-quality, dynamic predictor with lower annotation
costs. The key to leveraging this kind of weakly labeled data
lies in the means by which dynamic predictions are aggregated
or pooled across time to form static predictions. There are
standard approaches to aggregating predictions, such as max-
or mean-pooling, which can be difficult to optimize (in the case
of max) or require strict assumptions about the characteristics
of the data which may not hold in practice, e.g., mean-pooling
assumes that event activation must occupy the majority of a
labeled observation window. Making effective use of weakly
labeled data can therefore require substantial engineering and
algorithm design effort.

A. Our contributions

In this article, we develop a general family of adaptive
pooling operators—collectively referred to as auto-pool—
which generalize and interpolate between standard operators
such as max, mean, or min. The proposed methods are
designed to be jointly learned with dynamic prediction models
(e.g., convolutional networks), allowing dynamic predictors to
be trained from weakly annotated data, and require minimal
assumptions about the label characteristics. We evaluate the
proposed methods on three multi-label, sound event detection
datasets, which exhibit differing characteristics of label spar-
sity and duration. Our empirical results show that the proposed
methods outperform standard, non-adaptive pooling operators,
and the resulting models achieve comparable accuracy to
models trained from strongly labeled data.

II. RELATED WORK

A. Sound event detection

Sound event detection (SED) has seen a dramatic increase
in interest from the research community over the past decade,



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 2

as evidenced by the growing popularity and participation in the
DCASE challenge [10] and the emergence of domain-specific
SED systems, e.g., for bioacoustic SED [11]. Early approaches
relied on standard features (such as Mel-frequency cepstral
coefficients) combined with standard machine learning algo-
rithms, such as support vector machines [12–14] or Gaussian
mixture models (optionally with temporal smoothing) [15–18].
Other strategies include spectral decomposition methods and
source separation models [19–26]. The most recent research
on SED is dominated by deep (fully connected) neural net-
works [27], convolutional networks [4, 28, 29], recurrent net-
works [30, 31], or convolutional-recurrent networks [32, 33].

The aforementioned approaches rely on strongly labeled
data, which as discussed in the introduction, limits their practi-
cal applicability. While this limitation can be overcome in part
through data synthesis [34], the problem has led researchers
to investigate models for SED that can be trained from weak
(static) labels. Interest in this problem formulation spiked with
the release of AudioSet [35], which contains approximately 2
million 10-second YouTube clips with weak audio labels, and
the DCASE 2017 challenge [10]. One of the DCASE 2017
tasks (Task 4) was based on a subset of AudioSet, and the
problem was to develop models that can be trained on weak
labels but produce strong (i.e., dynamic, time-varying) labels.
Many of the subsequently published papers addressing SED
using weakly labeled data (section II-C) formulate the problem
in the multiple instance learning (MIL) framework.

B. Multiple instance learning

Multiple instance learning (MIL) was proposed in its mod-
ern form by Dietterich et al. [36] as a supervised learning
problem where a single binary class label is applied to a
set (bag) of related examples (instances) in the training set.
MIL problems naturally arise in a variety of application
domains where precise labeling can be expensive, such as
object recognition in computer vision. A label may be applied
to an image indicating the presence of an object, while the
“instances” to be classified are small patches within the image.
Similarly, for SED, it may be more cost-effective to label a
relatively long clip for the presence of an event, rather than
each individual frame.

The general MIL formulation has been broadly applied
within computer vision [37–39], it has been relatively less
common in audio applications. Mandel and Ellis [40] com-
pared two support vector machine-based MIL algorithms [41,
42] for classifying 10-second music excerpts (the instances)
for which labels had been generated at the levels of track,
album, or artist. Their target vocabulary included a mixture of
genre, style, and instrumentation tags, and they found that the
best-performing method was the MI-SVM algorithm [41], but
that it was comparable to a naive baseline in which aggregated
training labels were propagated to all constituent instances
prior to training. Relatedly, Wu et al. developed a hierarchical
generative model for music emotion recognition [43]. In
their model, song labels are modeled as generating multiple
instances of segments, which in turn each generate multiple
sentences (instances) which are jointly represented by text

(lyrics) and acoustic features. While their generative model
is trained on weakly labeled data, it does not provide a direct
mechanism for inferring instance-level labels.

In other related work, Briggs et al. [44] compared several
previously developed MIL algorithms for detecting (multiple)
bird species from short (10–15s) audio excerpts. Their results
demonstrated that k-nearest-neighbor [45] and clustering [46]
approaches both perform well at excerpt-level prediction, but
they did not report evaluations at the level of instances (time-
frequency patches). For comparison purposes, we evaluate the
methods proposed here on both static and dynamic prediction.

C. Sound event detection using weakly labeled data

When reviewing approaches for weakly labeled SED, we
can group approaches by two key features: the model used to
produce dynamic features (or predictions), i.e., an instance-
level representation, and the approach used to aggregate
instance-level features or predictions to a bag-level (static)
prediction. Note that for SED, instances typically correspond
to audio frames or short chunks. In terms of modeling,
while approaches based on GMM [47] and SVM [48] have
been proposed, the vast majority are based on deep neural
networks including DNN [49], CNN [50–54], RNN [55] and
CRNN [56]. Some approaches propagate the bag-level label
to all instances and train against these directly [51, 56], which
can introduce instance-level label noise. Other approaches are
based on source separation, and obtain dynamic labels by
post-processing the separated sources (e.g., by computing the
frame-wise energy of each separated source) [57, 58].

However, the majority of approaches aggregate instance-
level representations over time to produce a bag-level predic-
tion. Given the standard MIL formulation, it is understandable
that most approaches rely on pooling or customized loss
functions that make use of the max operator [47, 48, 50],
though variants including (a precursor to this work) soft-max
pooling [52], and mean pooling [53] have been proposed. As
shall be discussed in Section III, max-pooling causes a number
of issues that limit its efficacy as a pooling strategy for MIL.

D. Attention and differentiable pooling

Attention mechanisms [59] have been recently developed
as a way to restrict the dependence of an output prediction
to a subset of the input. Typically, attention mechanisms are
applied to structured prediction problems, such as machine
translation or automatic speech recognition, where the output
is a sequence (e.g., predicted translation text) has some regular
structure that may be exploited by the model architecture,
which is often a recurrent neural network. While the basic
idea of attention for MIL is appealing, the training labels in
MIL are typically unstructured: e.g., a single label that applies
to an entire sequence. However, the model must still produce
structured predictions, and it is not directly obvious how to
apply standard attention mechanisms.

Convolutional (feed-forward) attention [60] is a closer fit
to the MIL setting, as the attention mechanism is used to
summarize a structured input by a fixed-length context vector c
as a weighted average c =

∑
t etht of instance representations



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 3

{ht}, from which the output is predicted as ŷ = g(c). Note that
the intermediate representations ht do not generally constitute
instance predictions. Because g is usually non-linear (and non-
convex), there is no direct relationship between the attention-
aggregated output g(c) = g(

∑
t etht), the weighted average of

g applied to instances
∑
t etg(ht), and instance-wise outputs

g(ht). As a result, while optimizing g(c) may provide a good
bag-level model, it does not directly provide an instance-level
model as required by MIL.

Recently, attention-based models have been proposed which
use class likelihoods as intermediate representations, along
with an identity mapping for g [49, 54]. The methods we
develop in this article are similar in spirit, but with a more
constrained and interpretable attention mechanism that relates
directly to the instance-level predictions and the MIL problem
formulation. Moreover, the proposed methods introduce only
a single additional parameter for each class, which can be
directly interpreted as interpolating between different standard
pooling operators, as described below.

Aside from attention models, similar techniques have been
used to provide differentiable pooling operators for MIL. Most
similar to the methods we propose is that of Hsu et al. [39],
which uses the smooth log

∑
exp approximation to the max

operator for MIL applications in computer vision. Hsu et al.
introduce a hyper-parameter to control the sharpness of the
approximation, but it is fixed a priori, and unlike the methods
proposed here, the aggregation does not adapt automatically.
Moreover, because log

∑
exp aggregation is non-linear, it ex-

hibits similar difficulty in recovering instance-wise predictions
as the attention-based approach described above.

Finally, Zeiler and Fergus [61] developed a general formu-
lation that adaptively interpolates between different standard
pooling operators. Although this approach has been applied to
audio problems [62], its use has been limited to pooling of
internal feature representations in convolutional networks, and
it has not been used in MIL applications. The methods we
develop in this article are conceptually simpler, and more lim-
ited in scope to directly address the difficulties of aggregating
predictions in MIL problems.

III. METHODS

In this section, we describe the multiple instance learning
problem in general, and illustrate short-comings of standard
pooling operators when applied to the MIL context. We then
develop a family of adaptive pooling operators to reduce
dynamic label predictions to static predictions during training.
For ease of exposition, we first derive the methods for single-
label binary classification problems, followed by the general-
ization to multi-label settings.

A. Multiple instance learning

In the multiple instance learning (MIL) problem formu-
lation, training data are provided as labeled sets (bags) of
examples (Xi, Yi)

n
i=1 where Xi = {x1, x2, · · · } ⊂ X contains

multiple instances xj , and Yi ∈ {0, 1} is a single label for the
set Xi [36], and X and Y denote the feature and label spaces.
The label convention is that Yi = 1 if any instance x ∈ Xi is
positive, and Yi = 0 if all instances are negative. The goal is

Fig. 1. Pooling operators propagate gradient information in proportion to
the responsibilities they assign to instance-level predictions, indicated here
by the darkness of arrows. Left: max assigns all responsibility to the largest
instance; middle: mean assigns equal responsibility to all instances; right:
soft-max (eq. (6)) assigns greater responsibility to large instances.

to use this weakly labeled data to learn an instance classifier
h : X → Y .

While MIL can be applied to a variety of learning al-
gorithms (e.g., support vector machines or nearest neighbor
classifiers), in this work we focus on deep neural networks.
The classifiers under consideration here take the form of a
thresholded likelihood p̂(Y |x), e.g.,

h(x) =

{
1 p̂(Y |x) ≥ 0.5

0 otherwise
. (1)

In this formulation, the predicted label for a bag is the maxi-
mum over instance-wise predictions. Equivalently, a likelihood
for the bag-label can be induced from the instance likelihoods
by defining the bag-level likelihood as

P̂ (Y |X) = max
x∈X

p̂(Y |x), (2)

which results in the bag prediction rule

h(X) =

{
1 P̂ (Y |X) ≥ 0.5

0 otherwise
. (3)

This prediction rule is depicted schematically in Figure 1 (left),
where the bag-level prediction depends only on the maximum
of its instance-level predictions.

During training, the objective is to maximize the likelihood
of observed labeled bags, e.g., by minimizing the binary cross-
entropy over the model parameters θ:

min
θ

1

n

n∑
i=1

−Yi log P̂ (Y |Xi)−(1−Yi) log
(

1− P̂ (Y |Xi)
)
.

(4)

B. Max-pooling

Typically, eq. (4) is optimized by some form of gradient
descent, which requires propagating gradients through the max
operator in eq. (2) via the chain rule. The max operator is
not itself differentiable, so sub-gradient descent must be used
instead. The sub-differential set of the max operator applied
to inputs {zi} ⊂ R is the set of all convex combinations of
its maximizers’s sub-gradients (assuming each input is sub-
differentiable):

∂max {zi} = Conv
{
g

∣∣∣∣ g ∈ ∂zi ∧ zi = max
j
zj

}
(5)



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 4

where Conv(S) denotes the convex hull of a set S:

Conv(S) =

{∑
x∈S

µxx

∣∣∣∣∣∑
x∈S

µx = 1 ∧ ∀xµx ≥ 0

}
.

Any element of ∂max can be used in place of a gradient,
though most implementations select a single maximizer at
random; often, the maximizer is unique, so the distinction is
unimportant. A sub-gradient of max can be thus viewed as a
weighted average of all inputs, subject to the constraint that
non-maximizing inputs must have weight 0.

When applying the chain rule to ∂max, the sub-gradient
of the objective function with respect to non-maximizing
instances is 0, and those instances therefore do not contribute
when updating the parameters θ. This is particularly problem-
atic early in training, where the instance-wise predictions are
essentially random. Parameter updates then depend entirely
upon single, randomly selected instances (as depicted in Fig-
ure 1, left). As a result, max-pooling for MIL can be sensitive
to initialization, generally unstable, and difficult to deploy.

C. Soft-max pooling

To ameliorate the issues highlighted above, we proposed in
previous work [52] to replace the max operator in eq. (2) by
the soft-max weighted average:

P̂s(Y |X) =
∑
x∈X

p̂(Y |x)

 exp p̂(Y |x)∑
z∈X

exp p̂(Y | z)

 . (6)

This operator behaves similarly to the max operator, in that
P̂s is large if any of its inputs p̂(Y |x) are large, and small
if all of its inputs are small. However, it is continuously
differentiable, and assigns responsibility to each instance x
so that the entire bag contributes to the gradient calculation
and parameter updates. As illustrated in Figure 1 (right), each
instance x contributes in proportion to its label likelihood
p̂(Y |x), so that positive predictions have more influence and
negative predictions have less.

Because the inputs to the soft-max pooling operator are
probabilities p̂(Y |x) ∈ [0, 1], the weights assigned by eq. (6)
are also bounded. In general, we have the following relation
between a soft-max’s input and output:

Proposition 1. Let a ≤ b ∈ R and z ∈ [a, b]
m ⊂ Rm, and let

ρ(z)i := exp(zi)/
∑
j exp(zj) denote the soft-max operator.

Then for any coordinate i, the corresponding soft-max output
ρ(z)i is bounded as

ea

ea +(m− 1) · eb
≤ ρ(z)i ≤

eb

eb +(m− 1) · ea
.

Proof. First, observe that ρ(z)i is proportional to exp zi and
inversely proportional to

∑
j 6=i exp zj . A soft-max coordinate

ρ(z)i is therefore maximal when one coordinate zi = b is
maximal, and all remaining (m − 1) coordinates zj 6=i = a

10 20 30 40 50 60 70 80 90 100
Bag size (m)

0.0

0.1

0.2

In
st

an
ce

 w
ei

gh
t

Uniform weights
Soft-max bounds

Fig. 2. The soft-max weighted average (eq. (6)) produces instance weights
satisfying the bounds given in eq. (7) (shaded region). As the size m of the
bag grows, the bounds converge to 1/m (solid line).

are minimal. In this case, the soft-max output ρ(z) for each
coordinate k is

ρ(z)k =
exp(zk)

eb +(m− 1) · ea
.

Since all zk ≤ b, this achieves the upper bound. A similar
argument proves the analogous lower bound.

Applying proposition 1, if a bag has |X| = m instances,
and each instance x ∈ X has a likelihood 0 ≤ p̂(Y |x) ≤ 1,
then the weight for each instance is bounded as

1

1 + e ·(m− 1)
≤ exp p̂(Y |x)∑

z∈X
exp p̂(Y | z)

≤ e

e +m− 1
. (7)

Soft-max pooling therefore has limited capacity to concentrate
on a small portion of instances within a bag, since the weight
for any single instance is Θ(1/m). As illustrated in Figure 2,
soft-max pooling behaves similarly to unweighted averaging
as the bag size grows.

D. Auto-pooling

The bounded range problem of soft-max pooling can be
addressed by introducing a scalar parameter α ∈ R:

P̂α(Y |X) =
∑
x∈X

p̂(Y |x)

 exp (α · p̂(Y |x))∑
z∈X

exp (α · p̂(Y | z))

 . (8)

Treating α as a free parameter to be learned along-side the
model parameters θ allows eq. (8) to automatically adapt
to and interpolate between different pooling behaviors. For
example, when α = 0, eq. (8) reduces to an unweighted mean
(Figure 1, center); when α = 1, eq. (8) simplifies to soft-max
pooling eq. (6); and when α→∞, eq. (8) approaches the
max operator. We therefore refer to the operator in eq. (8) as
auto-pooling.

With auto-pooling, for α ≥ 0, the bounds from proposition 1
are [a, b] = [0, α], and the instance weights are bounded by

1

1 + eα ·(m− 1)
≤ exp (α · p̂(Y |x))∑

z∈X
exp (α · p̂(Y | z))

≤ eα

eα +m− 1
,

(9)
which approaches the open unit interval (0, 1) as α→∞.



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 5

Additionally, letting α ≤ 0 leads to approximate min-
pooling, where smaller input values receive larger weight in
the combination. In this case, the bounds are [a, b] = [α, 0],
and the resulting instance weight bounds are:

eα

eα +m− 1
≤ exp (α · p̂(Y |x))∑

z∈X
exp (α · p̂(Y | z))

≤ 1

1 + eα ·(m− 1)
.

(10)
As α → −∞, the weight bounds again approach the unit
interval (0, 1), except that the upper bound is now achieved
by the smallest instance prediction. This effectively relaxes
the core assumption of multiple instance learning that a bag
label is equal to the max (disjunction) over instance labels.
Supporting min (conjunction) behavior allows for a bag to
be predicted as a positive example if all of its instances are
predicted as positive examples, which would be appropriate
for long-duration events.

E. Constrained auto-pooling

Equation (9) bounds the effective range of the weight as-
signed to any given instance in terms of the pooling parameter
α and the bag size m. However, in some applications, it may
be more natural to constrain α in terms of the amount of
weight the pooling operator is allowed to assign to a single
instance when making a bag-level decision. For example, in
sound event detection, this may correspond to requiring the
detector to be active for at least some minimum time duration
for the bag to be predicted as a positive example. Alternately,
one may require that a minimum fraction of instances must be
positive before the bag is predicted positive, or equivalently,
that no single instance receives too much weight in (8).

Let 1/m ≤ φ+ < 1 denote the maximum permissible
aggregation weight for a single instance.1 Then α ≥ 0 can
be upper-bounded as:

eα

eα +m− 1
≤ φ+ ⇒ α ≤ ln

φ+
1− φ+

+ ln (m− 1) .

(11)
Similarly, a minimum weight constraint 0 < φ− ≤ 1/m
produces the following lower bound for α:

φ− ≤
eα

eα +m− 1
⇒ α ≥ ln

φ−
1− φ−

+ ln (m− 1) .

(12)
Note that these bounds are tight, in that φ− = φ+ = 1/m
implies α = 0, which recovers mean-pooling.

Now, consider the minimal upper bound φ+ that allows a
single instance to determine the majority vote for a bag. This is
achieved by the extremal case where one instance i is maximal
and the remaining instances j 6= i are minimal:

p̂ (Y |xk) =

{
1 k = i

0 k 6= i
. (13)

With the decision rule (and threshold) given in eq. (3),
φ+ = 0.5 is the minimal upper bound on weights that produces
max-pooling behavior, and therefore constitutes an upper

1The maximum weight φ+ cannot be less than 1/m because all weights
must sum to 1. Similarly, a minimum weight bound φ− cannot exceed 1/m.

bound that does not significantly reduce the flexibility of auto-
pooling. With this value of φ+, eq. (11) simplifies to

φ+ = 0.5 ⇒ α ≤ ln(m− 1).

Throughout the remainder of this article, we will refer to auto-
pooling with the φ+ = 0.5 bound imposed as constrained
auto-pool (CAP).

F. Regularized auto-pooling

As an alternative to constrained auto-pool, one may consider
regularized auto-pool (RAP), where a penalty is applied to
α to prevent it from placing too much weight on individual
instances but without an explicit bound on the maximum (or
minimum) weight. While there are many possibilities for the
choice of penalty function, here we opt for a quadratic penalty
α2, so that the penalty grows with α. This promotes mean-
like behavior, but still provides flexibility to learn max-pooling
behavior if necessary.

Concretely, for the remainder of this article, we will denote
by RAP any auto-pool model with a quadratic penalty:

min
θ,α

f(θ) + λ|α|2,

where f(θ) denotes the learning objective of eq. (4), and
λ > 0 is a positive coefficient. For multi-label formulations,
the penalty generalizes to the squared Euclidean norm λ‖α‖2.

G. Multi-label learning

The discussion so far has centered on binary classification
problems, but the methods directly generalize to multi-label
settings, in which each instance x receives multiple positive
labels. In this setting, a separate auto-pooling operator is
applied to each class. Rather than a single parameter α, there
is a vector of parameters αc where c indexes the output
vocabulary. This allows a jointly trained model to adapt the
pooling strategies independently for each category.

IV. EXPERIMENTS

In this section, we describe a series of experiments inves-
tigating the behavior of auto-pooling methods on three sound
event detection applications: urban environments (URBAN-
SED), smart cars (DCASE 2017), and musical instru-
ments (MedleyDB). For each dataset, we compare models
trained with standard, non-adaptive pooling operators (max
and mean), the soft-max pooling model described in Sec-
tion III, and the three adaptive methods: auto-pool, con-
strained auto-pool (CAP), and regularized auto-pool (RAP).
For RAP models, we report results independently for λ ∈
{10−2, 10−3, 10−4}. For the urban environment and musical
instrument applications, we will also compare to a model
trained with strong (time-varying) labels to provide a sense of
the maximum expected performance for the given model ar-
chitecture. Models trained with strong labels omit the temporal
pooling step, and the training loss is computed independently
for each instance. The smart car dataset (DCASE 2017)
does not provide strong labels for the training set, so this
comparison could not be performed.



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 6

We report standard evaluation metrics for both static (bag-
level) and dynamic (segment-level) prediction: precision, re-
call, and F1.2 For static predictions the metrics are computed
following the standard methodology for multi-label classifi-
cation evaluation. For the dynamic predictions we compute
the segment-based variant of the aforementioned metrics as
defined by Mesaros et al. [63] using a segment duration of
1 second, as per the DCASE challenge [10]. Additionally,
for the dynamic prediction task, we report the error rate E,
defined as the average number of substitutions, insertions, and
deletions of events over all segments. Note that precision,
recall and F1 range from 0 (worst) to 1 (best), while the error
rate E is non-negative with 0 being the best and greater values
representing worse performance.

A. Datasets

1) URBAN-SED: URBAN-SED is a dataset of 10,000
soundscapes generated using the Scaper soundscape synthesis
library [34]. Each soundscape has a duration of 10 s, and
the dataset as a whole totals 27.8 hours of audio with close
to 50,000 annotated sound events from 10 sound classes.
Each soundscape contains between 1–9 foreground sound
events, where the source material for the events comes from
the UrbanSound8K dataset [64], and has a background of
Brownian noise resembling the typical “hum” often heard in
urban environments. The dataset comes pre-sorted into train,
validation and test splits containing 6000, 2000 and 2000
soundscapes respectively.

An important characteristic of URBAN-SED is that since
both the audio and annotations were generated computa-
tionally, the annotations are guaranteed to be correct and
complete, while the dataset is an order of magnitude larger
than the largest strongly labeled SED dataset compiled via
manual labeling. Since the soundscapes are “composed” using
a process akin to an audio sequencer, they are not as realistic
as manually labeled datasets of real soundscape recordings. In
particular, as illustrated in Figure 3, events may be artificially
truncated in duration in unnatural-sounding ways. Still, it has
been shown that the data still present a challenging scenario
for state-of-the-art SED models [34].

2) DCASE 2017 Task 4: The DCASE 2017 challenge [10]
consisted of four tasks, including one task with the same
problem formulation as this work (training a model to generate
strong predictions from weakly labeled training data), task
4: “Large-scale weakly supervised sound event detection for
smart cars”. The dataset used for this task is a subset of
the AudioSet dataset [35], and consists of just over 50K 10-
second excerpts from YouTube videos. The dataset is split into
a “development” set of 51660 excerpts and an “evaluation”
(i.e., test) set of 1103 excerpts. The development set is further
divided into a “train” set with 51172 excerpts and a validation

2F1-macro reports the unweighted average of class-wise F1 scores. Micro-
averages are not available for segment-based evaluation.

0 2 4 6 8 10
Event duration (seconds)

air
conditioner

car horn
children
playing

dog bark

drilling
engine

idling
gun shot

jackhammer

siren

street music

Fig. 3. Event durations for each class in the URBAN-SED. Each point
corresponds to a test clip, and the mean event durations are indicated by
vertical bars. By construction, each event is clipped to at most 3 s (30% of
the clip), though an event class can occur multiple times within a clip.

set of 488 videos.3

For conciseness, for the remainder of the paper we shall
refer to this dataset simply as “DCASE 2017”. The sound
events in this dataset come from 17 sound classes selected by
the challenge organizers out of the AudioSet ontology [35]
that are related to traffic such as sirens, horns, beeps, and
different types of vehicles such as car, bus and truck. The
weak labels were generated semi-automatically [35], while
strong labels for the validation and test sets were manually
annotated by the challenge organizers by listening to the audio
(without watching the video). The dataset fits our problem
formulation, but its annotations have limitations, which makes
proper evaluation difficult. Not all target sound events are
guaranteed to be labeled and have a non-zero duration, and
some such as “car” and “car passing by” are semantically
overlapping. However, it does have a unique distribution of
event durations compared to the other two datasets used in
this study. The event durations for this dataset, depicted in
Figure 4, follow a more natural distribution than those of
URBAN-SED (Figure 3), which we expect to influence the
behavior of the proposed models, in particular the auto-pool
models where α is learned from the data. Our motivation for
including this dataset in the evaluation is primarily to study
the adaptive behavior of the α parameter, and not to achieve
the best possible performance (measured by F1).4

3) MedleyDB: MedleyDB [65] is a collection of 122 multi-
track recordings from a variety of musical genres and styles.

3To avoid possible confusion it is necessary to highlight the difference
between the nomenclature used in the challenge and the nomenclature more
commonly found the literature, as the latter will be used in this study for
consistency. Throughout this paper, we use the challenge “train” set as our
training set, the challenge “test” set as our validation set, and the challenge
“evaluation” set as our test set.

4For a thorough evaluation of existing methods on this dataset, we refer
interested readers to the DCASE 2017 challenge results: https://www.cs.tut.fi/
sgn/arg/dcase2017/challenge/task-large-scale-sound-event-detection-results.

https://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-large-scale-sound-event-detection-results
https://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-large-scale-sound-event-detection-results


IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 7

0 2 4 6 8 10
Event duration (seconds)

Air horn, truck horn
Ambulance (siren)

Bicycle
Bus
Car

Car alarm
Car passing by

Civil defense siren
Fire engine, fire

truck (siren)
Motorcycle

Police car (siren)
Reversing beeps

Screaming
Skateboard

Train
Train horn

Truck

Fig. 4. Event durations for each class in DCASE 2017. Each point corresponds
to a test clip, and the mean event durations are indicated by vertical bars.
DCASE events typically cover at least 40% (4 s) of the clip, and the high
concentrations at 10.0 indicate that events often span the entire clip.

While it was initially developed to facilitate pitch tracking
evaluation, it includes time-varying instrument activation la-
bels for each track.

Because each track in MedleyDB is provided in the form
of isolated instrument recordings (stems), it is possible to gen-
erate different mixtures of the stem recordings for any given
track. This motivates a form of data augmentation: if a track
has n instruments, we generate n alternate mixes, where mix
i has the ith instrument removed; the remaining n− 1 stems
are linearly mixed to best approximate the full mix, using
the mixing coefficients provided by the MedleyDB python
package.5 By training on this expanded set of leave-one-
out mixes, we separate each instrument from its surrounding
context, which helps to eliminate confounding factors when
estimating the presence of each instrument. The expanded
MedleyDB set contains 531 tracks, totaling 33.1 hours of
audio.

Because of the skewed distribution of instruments in Med-
leyDB, we reduced the vocabulary of interest to the 8 most
common sources: acoustic guitar, clean electric guitar, dis-
torted electric guitar, drum set, electric bass, female singer,
male singer, piano. Unlike URBAN-SED and DCASE, there
is not a pre-defined evaluation split of MedleyDB. We instead
repeated the experiment over 10 random, artist-conditional
80–20 train-test splits; validation sets were randomly split
80–20 from the training splits (without artist conditioning).
Having multiple train-test splits allows us to perform statistical
analyses which are not possible with the URBAN-SED and
DCASE datasets. We therefore do not make claims as to which
methods perform “best” on URBAN-SED and DCASE.

Figure 5 illustrates the distribution of instrument activation

5https://github.com/marl/medleydb

100 101 102

Event duration (seconds)

acoustic guitar
clean electric

guitar
distorted

electric guitar
drum set

electric bass

female singer

male singer

piano

Fig. 5. Event durations for each class in MedleyDB (logarithmically scaled).
Each point corresponds to the total duration of an instrument over a track,
with the mean durations indicated by vertical bars. The black line marks the
10 second point used to generate training patches.

durations over the dataset. Most instruments are active for
substantially longer than the 10 s observation window used
in our experiments, indicating that labels should be expected
to be constant (entirely on or entirely off) over the duration
of a training example.

B. Model architecture

The model used in this work is divided into two main
components: a dynamic predictor that generates predictions
at a fine temporal resolution (i.e., frame/instance-level pre-
dictions), and a pooling layer which aggregates the instance-
level predictions into a single static (bag-level) prediction. Our
goal is to compare and contrast the different pooling functions
proposed in Section III. As such, in this work we adopt a single
model architecture for the dynamic predictor, and keep it fixed
throughout the study. A block diagram depicting the complete
architecture including the dynamic predictor followed by the
temporal pooling layer is provided in Figure 6.

For the dynamic predictor, we use an architecture inspired
by the audio subnetwork of the L3-Net architecture proposed
by Arandjelovic and Zisserman [66], which was shown to
learn highly discriminative deep audio embeddings from a
self-supervised audio-visual correspondence task. In this work
the input dimensions are ordered as (feature, time); details
about the input are provided in Section IV-C. The model
begins with four convolutional blocks, each block consisting
of two convolutional layers followed by strided (2, 2) max-
pooling, where the number of convolutional filters is doubled
for each subsequent block (16, 32, 64, 128) and all filters
are of dimensionality (3, 3). This is followed by a single
convolutional layer with 256 full-height (8, 1) filters, followed
by a single dense layer applied independently to each time-
step, and with as many outputs (units) as there are classes in
the dataset being used. Batch normalization [67] is applied
to the output of every convolutional layer as well as to the
input to the network. We apply dimensionality-maintaining
padding (“same padding”) to the input to all convolutional

https://github.com/marl/medleydb


IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 8

Ba
tch

 n
or

m
ali

za
tio

n

Co
nv

: 1
6 

(3
, 3

)

Co
nv

: 1
6 

(3
, 3

)

Po
ol:

  (
2, 

2)

Ti
m

e 
Di

str
ibu

te
d 

De
ns

e: 
 n

_c
las

se
s

Te
m

po
ra

l P
oo

lin
g

Input: log-mel spectrogram Output 1: time-varying per-class 
likelihoods (strong labels)

Output 2: weak labels

Co
nv

: 3
2 

(3
, 3

)

Co
nv

: 3
2 

(3
, 3

)

Po
ol:

  (
2, 

2)

Co
nv

: 6
4 

(3
, 3

)

Co
nv

: 6
4 

(3
, 3

)

Po
ol:

  (
2, 

2)

Co
nv

: 1
28

 (3
, 3

)

Co
nv

: 1
28

 (3
, 3

)

Po
ol:

  (
2, 

2)

Co
nv

: 2
56

 (8
, 1

)

Fig. 6. Block diagram of the model architecture used in this study, including its two main components: a fully convolutional dynamic predictor, followed by
a temporal pooling layer implemented by any of the pooling functions described in Section III: max, mean, soft-max, auto-pool, constrained auto-pool (CAP)
or regularized auto-pool (RAP).

layers but the last, where we do not apply padding (“valid
padding”). We use rectified linear unit (ReLU) activations
for all convolutional layers and sigmoid activations for the
output layer to support multi-label classification. The output
of the latter is a multi-label prediction p̂(Y |x) for each frame
(instance) x. Note that since the model down-samples in time
by max-pooling, the frame rate of the dynamic predictions is
reduced by a factor of 16 from the input.

Finally, the output of the dynamic predictor is aggregated
over all instances using one of the pooling operators presented
in Section III to produce a static prediction P̂ (Y |X) for each
class, represented in Figure 6 by the temporal pooling layer
at the right end of the diagram.

Note that since the dynamic predictor is composed of
convolutional layers and a single time-distributed dense layer,
it is agnostic of the input length (i.e., the number of input
instances/frames). This is followed by the temporal pooling
layer which is again agnostic of the input length. As such,
the entire architecture is length-agnostic (for audio, duration-
agnostic) and can accept input of arbitrary length. That said,
some of the pooling functions presented in Section III are
affected by the length of the input: e.g., soft-max pooling
approaches mean pooling as the length of the input increases,
and the parameter α for auto-pooling methods depends on the
bag length m. However, this only matters for static prediction,
and after the model has been trained, it can still produce
dynamic predictions on arbitrary-length inputs.

C. Training and evaluation

In all experiments, training data was augmented using
MUDA [68] to generate pitch-shifted versions of each example
by {±1,±2} semitones, increasing the effective training set
size by a factor of 5. All signals were processed with librosa
0.5.1 [69] to produce log-scaled Mel spectrograms with the
following parameters: sampling rate 44.1 KHz, nFFT = 2048
(46ms windows), hop length of 1024 samples (frame rate of
43 Hz), and 128 Mel frequency bands. The models produce
dynamic predictions at a frame rate of 43/16 ≈ 2.69 Hz.

Models were implemented using Keras [70] and Tensor-
Flow [71]. Each model was trained using the Adam opti-
mizer [72], with data sampled using Pescador 1.1 [73]. Models
were trained on mini-batches of 16 10-second patches. Early

stopping was used if the validation accuracy did not improve
for 30 epochs; learning rate reduction was performed if the
validation accuracy did not improve for 10 epochs. Auto-pool
models (including CAP and RAP) were initialized with α = 1.

All models were evaluated using the sed eval package [63]
to compute segment-based metrics with the segment duration
set to 1 s as per the DCASE 2017 challenge evaluation. For
comparison purposes, we report accuracy for static (bag-level)
prediction accuracy using the decision rule given in eq. (3),
i.e., the maximum over dynamic predictions.

When training on the MedleyDB dataset, training samples
were generated by randomly sampling 10 second excerpts
from the full-duration songs. The bag label for each excerpt
was considered positive for any instruments which were active
for at least 10% (1 s) of the excerpt, to match the 1 s duration
used for the segment-based evaluation.

For reproducibility, we make our implementation and ex-
periment framework software used in this study publicly
available.6 To enable easy use of the proposed auto-pool
function in new work, we have also implemented it as an
independent Keras layer.7

V. DISCUSSION

This section describes the results of the experimental eval-
uation, broken down by data-set.

A. URBAN-SED results

Table I presents the results of the URBAN-SED evaluation,
averaged across all classes. On the static prediction task, auto-
pool achieves the highest F1 score of all MIL models under
comparison, although the constrained and regularized variants
are nearly equivalent. Note that the strong model, trained with
full access to time-varying labels, performs only slightly better,
indicating that the auto-pool is effective for static prediction.

This trend carries over to the dynamic prediction task, where
the constrained auto-pool model (CAP) achieves F1 = 0.533,
compared to the strong model’s F1 = 0.551, and compa-
rable scores are achieved by the regularized models with
λ ∈ {10−3, 10−4}. On this dataset, the auto-pool model

6https://github.com/marl/milsed
7https://github.com/marl/autopool

https://github.com/marl/milsed
https://github.com/marl/autopool


IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 9

TABLE I
CLASS-AGGREGATED RESULTS ON URBAN-SED.

Static Dynamic
Model F1 P R F1 P R E↓

Max 0.742 0.774 0.717 0.463 0.774 0.330 0.695
Mean 0.543 0.726 0.436 0.408 0.280 0.751 2.10
Soft-max 0.630 0.772 0.537 0.492 0.397 0.646 1.22

RAP 10−2 0.544 0.719 0.449 0.419 0.296 0.717 1.88
RAP 10−3 0.746 0.790 0.711 0.529 0.584 0.484 0.731
RAP 10−4 0.754 0.754 0.756 0.526 0.650 0.442 0.681
CAP 0.754 0.781 0.732 0.533 0.622 0.466 0.696
Auto 0.757 0.784 0.739 0.504 0.738 0.382 0.665

Strong 0.762 0.708 0.822 0.551 0.693 0.458 0.642

appears to over-fit the weak annotations, and a similar trend
can be observed for the max-pooling model. Conversely,
RAP with λ = 10−2 appears to be over-regularized, and
behaves similarly to mean-pooling on both static and dynamic
prediction tasks.

Figure 7 shows the F1 scores independently for each class.
While there is some variation across classes, RAP (λ ≤ 10−3)
and CAP consistently achieve high scores, and closely track
the strong model. Mean and RAP (λ = 10−2) tend to do
poorly on event classes which are transient or highly localized
in time (gun shot, car horn). This is in accordance with
Figure 1: mean-pooling predictions of sparse event categories
assigns equal responsibility to each frame in the input, which
will be erroneous for any frames that do not cover the event in
question. The fact that RAP λ = 10−2 exhibits this behavior
indicates that the regularization term is too strong, and the
model reverts to mean pooling.

Figure 8 illustrates the α vectors learned by each auto-
pooling model. In particular, the CAP model learns to max-
imize all α to the upper bound, indicating that max-like
behavior is preferred for all classes. This is likely an artifact
of how the dataset was constructed: events are artificially
clipped to at most 3 seconds, which results in implicitly
sparse class activations for each bag (Figure 3). Note, however,
that although the auto-pool models learn to produce max-like
behavior, they consistently outperform the max-pool model on
this dataset. This finding is consistent with the motivations for
soft-max pooling given in Section III: max-pooling produces
extremely sparse gradients during training, which impedes the
model’s ability to learn stable representations. By contrast,
initializing the auto-pool model with α = 1 (softmax-like
behavior) produces dense gradients early in training, which
become sparser as the model converges toward max-like
behavior.

Figure 9 illustrates the predictions made by the RAP model
with λ = 10−3 on a validation clip. While the model does
show some confusion (engine idling and air conditioner, or
drilling and jackhammer), the temporal localization is gener-
ally good.

B. DCASE 2017 results

Table II presents the class-aggregated results on the
DCASE 2017 data. Note that because the DCASE training

TABLE II
AGGREGATE RESULTS ON DCASE 2017.

Static Dynamic
Model F1 P R F1 P R E↓

Max 0.257 0.650 0.267 0.252 0.679 0.155 0.874
Mean 0.397 0.712 0.384 0.426 0.309 0.685 1.57
Soft-max 0.389 0.683 0.381 0.466 0.391 0.576 1.04

RAP 10−2 0.355 0.696 0.359 0.436 0.325 0.663 1.43
RAP 10−3 0.357 0.669 0.357 0.410 0.308 0.613 1.44
RAP 10−4 0.372 0.694 0.374 0.445 0.340 0.642 1.32
CAP 0.426 0.700 0.414 0.427 0.360 0.524 1.12
Auto 0.454 0.664 0.453 0.425 0.401 0.451 0.968

data only has clip-level annotations, we cannot compare to
a baseline model trained on strong annotations. As before
on URBAN-SED, the auto-pool method achieves the highest
static F1 score. Soft-max pooling achieves the highest dynamic
F1 score (0.466), but both the mean and auto-pool methods
are comparable, all landing in the range of 0.41–0.45.

Notably, the max-pooling model substantially under-
performs the competing methods on both static and dynamic
prediction tasks. This holds uniformly across all per-class
evaluations, as illustrated in Figure 10. With the exception
of unconstrained auto-pool, the remaining models generally
perform comparably across all classes.

Figure 11 shows the learned α vectors for each auto-
pool model. Unlike the URBAN-SED results in Figure 8,
auto-pool models do not uniformly approach max-pooling
on the DCASE data. Instead, there is significant diversity
among the different classes, with some tending toward max-
pooling behavior (large α for screaming or air horn/truck
horn, skateboard) and others tending toward mean-pooling
behavior (small α for bus or car passing by, truck). Referring
to Figure 4, the classes for which auto-pool (and CAP) learn
large α tend to have short event durations. By contrast, the
classes which result in small α values tend to span the majority
of the clip, and have high concentration on full duration (1.0).
In these classes, the bag- and instance-labels are equivalent,
so it is expected that mean-pooling (small α) out-performs
max-pooling.

C. MedleyDB results
Table III lists the class-aggregated scores over the Med-

leyDB dataset. Following Demšar [74], the distributions of
scores over all splits are compared using a Friedman test [75]
with Bonferroni-Holm correction (α = 0.05) [76], and meth-
ods indistinguishable from the best (average) are indicated in
bold. The strong model is omitted from statistical comparison,
as we are primarily concerned with differentiating among MIL
algorithms. From this analysis, we observe little differentiation
between the various methods. Mean-pooling and RAP (λ ≥
10−3) are significantly worse than auto-pool (best) for static
F1 score, though still comparable to the strong model. For
dynamic prediction, only the max- and auto-pooling methods
are significantly worse than RAP λ = 10−3, which closely
matches the strong model.

An examination of the per-class results presented in Fig-
ure 12 reveals that this trend is consistent across classes. The



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 10

Max
Mean

Soft-max
RAP = 10 2

RAP = 10 3

RAP = 10 4

CAP
Auto

Strong

air_conditioner car_horn children_playing dog_bark drilling

0.4 0.6
F1

Max
Mean

Soft-max
RAP = 10 2

RAP = 10 3

RAP = 10 4

CAP
Auto

Strong

engine_idling

0.4 0.6
F1

gun_shot

0.4 0.6
F1

jackhammer

0.4 0.6
F1

siren

0.4 0.6
F1

street_music

Fig. 7. URBAN-SED results: per-class dynamic F1 scores for each model under comparison.

0 1 2 3 4 5 6 7

air
conditioner

car horn
children
playing

dog bark

drilling
engine

idling
gun shot

jackhammer

siren

street music

+ = 0.5
RAP = 10 2

RAP = 10 3

RAP = 10 4
CAP
Auto

Fig. 8. URBAN-SED results: learned α parameters for each event class, for
auto-pool, constrained auto-pool (CAP), and regularized auto-pool (RAP).

TABLE III
AGGREGATE RESULTS ON MEDLEYDB OVER 10 RANDOMIZED TRIALS.
RESULTS WHICH ARE STATISTICALLY INDISTINGUISHABLE FROM THE

BEST (AVERAGE) PER METRIC (UNDERLINED) ARE INDICATED IN BOLD.

Static Dynamic
Model F1 P R F1 P R E↓

Max 0.650 0.605 0.829 0.437 0.875 0.292 0.719
Mean 0.550 0.409 0.988 0.655 0.594 0.733 0.608
Soft-max 0.577 0.444 0.974 0.662 0.668 0.658 0.524

RAP 10−2 0.553 0.413 0.989 0.659 0.604 0.727 0.593
RAP 10−3 0.563 0.425 0.984 0.673 0.638 0.714 0.545
RAP 10−4 0.623 0.497 0.957 0.622 0.757 0.530 0.540
CAP 0.625 0.512 0.937 0.609 0.787 0.498 0.551
Auto 0.653 0.567 0.888 0.528 0.841 0.386 0.636

Strong 0.575 0.437 0.982 0.675 0.640 0.716 0.540

0
512

1024
2048
4096
8192

16384

Hz
air conditioner

car horn
children playing

dog bark
drilling

engine idling
gun shot

jackhammer
siren

street music

Re
fe

re
nc

e

3 3.5 4 4.5 5 5.5 6 6.5 7
Time

air conditioner
car horn

children playing
dog bark

drilling
engine idling

gun shot
jackhammer

siren
street music

Es
tim

at
e

0.0
0.2
0.4
0.6
0.8
1.0

P(
Y

|x
)

Fig. 9. Dynamic predictions made by the RAP model
(
λ = 10−3

)
on a

validation clip from URBAN-SED. Top: the input mel spectrogram; middle:
the (dynamic) reference annotations; bottom: the predicted label likelihoods.

low performance of max-pooling exhibited on the DCASE
dataset persists on MedleyDB. Similarly, the auto-pool model
tends to do worse than the regularized variants across all
classes. This is most likely due to the characteristics of the
training data: instruments within a randomly selected excerpt
tend to be either entirely active or inactive, so mean-pooling is
a good approximation to strong training. This phenomenon is
illustrated in Figure 5, which shows the distribution of labeled
segment durations for each instrument. Aside from vocalists,
the average durations are well in excess of the 10 second mark
(gray), which indicates that uniformly sampled patches are
unlikely to catch instrument state transitions.

VI. CONCLUSION

To summarize the experimental results presented above, we
observe the following trends across all datasets. First, the
unconstrained, unregularized auto-pool method consistently



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 11

Max
Mean

Soft-max
RAP = 10 2

RAP = 10 3

RAP = 10 4

CAP
Auto

Air horn, truck horn Ambulance (siren) Bicycle Bus Car Car alarm

Max
Mean

Soft-max
RAP = 10 2

RAP = 10 3

RAP = 10 4

CAP
Auto

Car passing by Civil defense siren Fire engine, fire truck (siren) Motorcycle Police car (siren)

0.00 0.25 0.50 0.75
F1

Reversing beeps

0.00 0.25 0.50 0.75
F1

Max
Mean

Soft-max
RAP = 10 2

RAP = 10 3

RAP = 10 4

CAP
Auto

Screaming

0.00 0.25 0.50 0.75
F1

Skateboard

0.00 0.25 0.50 0.75
F1

Train

0.00 0.25 0.50 0.75
F1

Train horn

0.00 0.25 0.50 0.75
F1

Truck

Fig. 10. DCASE 2017 results: per-class dynamic F1 scores for each model under comparison.

0 2 4 6

Air horn, truck horn
Ambulance (siren)

Bicycle
Bus
Car

Car alarm
Car passing by

Civil defense siren
Fire engine, fire

truck (siren)
Motorcycle

Police car (siren)
Reversing beeps

Screaming
Skateboard

Train
Train horn

Truck

+ = 0.5
RAP = 10 2

RAP = 10 3

RAP = 10 4
CAP
Auto

Fig. 11. DCASE 2017 results: learned α parameters for each event class, for
auto-pool, constrained auto-pool (CAP), and regularized auto-pool (RAP).

achieves the highest scores for static prediction. If the prac-
titioner’s goal is to classify weakly labeled excerpts without
requiring more precise prediction, then auto-pool appears to be
the method of choice. However, auto-pool does exhibit a ten-
dency to “over-fit” to weak annotation, in that its performance
for dynamic prediction is generally lower than the proposed
alternatives, and that it favors precision over recall.

Second, the behavior of fixed pooling operators (min, max,

soft-max) depends on the characteristics of the dataset and
the relative duration of events in each class. Mean-pooling
performs well when events are long relative to the bag because
the bag-level labels can reasonably be propagated to all in-
stances. Max-pooling can perform well when events are short
within the bag, but it can also be unstable and difficult to train.
While auto-pooling often converges to max-like behavior, it
consistently outperforms the standard max-pool model, which
indicates that the improved gradient flow due to the soft-max
operator is indeed beneficial for learning good representations.

Third, as a general observation, max-pooling models tend to
favor precision over recall in dynamic evaluation. This is likely
due to the fact that to optimize the objective during training,
max-pooling needs only to model a single instance within
a bag. This obviously suffices for static evaluation, but for
dynamic evaluation, max-pooling models have no incentive
to model the entire duration of the source event, leading to a
reduction of recall. Similarly, the more max-like the pooling
operator becomes, e.g., RAP with small λ or unconstrained
auto-pool, the more emphasis the resulting model tends to
place on precision rather than recall. For similar reasons,
strongly trained models can under-perform MIL models in
static evaluation, as illustrated in table III. MIL models can
attend to specific portions of non-stationary signals (e.g., a
vocal attack) to detect their presence, while strongly trained
models attempt to solve the more difficult task of modeling
the entire duration of the event.

Although not empirically studied in this work, the choice of
initialization for α could also influence the resulting model.
Following the motivation given in Section III, we generally
recommend to initialize α with small values (either 0 or 1) to
ensure sufficient gradient propagation early in training.

In all datasets, the regularized auto-pool models are among



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 12

Max
Mean

Soft-max
RAP = 10 2

RAP = 10 3

RAP = 10 4

CAP
Auto

Strong

acoustic guitar clean electric guitar distorted electric guitar drum set

0.25 0.50 0.75
F1

Max
Mean

Soft-max
RAP = 10 2

RAP = 10 3

RAP = 10 4

CAP
Auto

Strong

electric bass

0.25 0.50 0.75
F1

female singer

0.25 0.50 0.75
F1

male singer

0.25 0.50 0.75
F1

piano

Fig. 12. MedleyDB results: per-class dynamic F1 scores for each model under comparison, averaged over 10 randomized trials. Error bars correspond to
95% confidence intervals under bootstrap sampling.

the best performing, illustrating that the models are able to
adapt to the characteristics of the data for a proper choice
of λ. This suggests a general recommendation for MIL event
detection problems: use RAP, and tune λ by hyper-parameter
optimization over a strongly labeled validation set.

Most importantly, the proposed method is able to nearly
match dynamic prediction accuracy to that obtained by training
with access to instance labels. This suggests that by framing
sound event detection as a MIL problem, practitioners may
be able to achieve comparable accuracy with a significant
reduction in effort and cost of acquiring training labels. Finally,
although we focus on SED applications in this article, we
emphasize that the proposed auto-pool operators are fully
general, and could be readily applied to MIL problems in any
application domain.

ACKNOWLEDGMENT

The authors acknowledge support from the Moore-Sloan
Data Science Environment at NYU. This work was partially
supported by NSF awards 1544753 and 1633259, and a Google
Faculty Award. We thank NVidia Corporation for the donation
of a Tesla K40 GPU.

REFERENCES

[1] J. P. Bello, C. Silva, O. Nov, R. L. DuBois, A. Arora, J. Sala-
mon, C. Mydlarz, and H. Doraiswamy, “SONYC: A system
for the monitoring, analysis and mitigation of urban noise
pollution,” Communications of the ACM, In press, 2018.

[2] D. Stowell, , and D. Clayton, “Acoustic event detection for
multiple overlapping similar sources,” in IEEE WASPAA, Oct.
2015, pp. 1–5.

[3] J. Salamon, J. P. Bello, A. Farnsworth, M. Robbins, S. Keen,
H. Klinck, and S. Kelling, “Towards the automatic classification
of avian flight calls for bioacoustic monitoring,” PLOS ONE,
vol. 11, no. 11, p. e0166866, 2016.

[4] V. Lostanlen, J. Salamon, A. Farnsworth, S. Kelling, and J. P.
Bello, “Birdvox-full-night: A dataset and benchmark for avian
flight call detection,” in IEEE Int. Conf. on Acoustics, Speech
and Signal Processing (ICASSP), Apr. 2018.

[5] Large-scale weakly supervised sound event detection for
smart cars. [Online]. Available: http://www.cs.tut.fi/sgn/arg/
dcase2017/challenge/task-large-scale-sound-event-detection

[6] R. Radhakrishnan, A. Divakaran, and P. Smaragdis, in IEEE
WASPAA.

[7] M. Crocco, M. Cristani, A. Trucco, and V. Murino, “Audio
surveillance: A systematic review,” ACM Comput. Surv., vol. 48,
no. 4, pp. 52:1–52:46, 2016.

[8] S. Goetze, J. Schroder, S. Gerlach, D. Hollosi, J.-E. Appell, and
F. Wallhoff, “Acoustic monitoring and localization for social
care,” Journal of Computing Science and Engineering, vol. 6,
no. 1, pp. 40–50, 2012.

[9] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. Gemmeke,
A. Jansen, C. Moore, M. Plakal, D. Platt, R. Saurous, B. Sey-
bold, M. Slaney, R. Weiss, and K. Wilson, “CNN architectures
for large-scale audio classification,” in IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP), Mar. 2017,
pp. 131–135.

[10] A. Mesaros, T. Heittola, A. Diment, B. Elizalde, A. Shah,
E. Vincent, B. Raj, and T. Virtanen, “Dcase 2017 challenge
setup: Tasks, datasets and baseline system,” in DCASE 2017-
Workshop on Detection and Classification of Acoustic Scenes
and Events, 2017.

[11] D. Stowell, “Computational bioacoustic scene analysis,” in
Computational Analysis of Sound Scenes and Events, T. Virta-
nen, M. D. Plumbley, and D. Ellis, Eds. Springer International
Publishing, 2018, pp. 303–333.

[12] A. Temko, “Acoustic event detection and classification,” Ph.D.
dissertation, Department of Signal Theory and Communications,
Universitat Politecnica de Catalunya, Barcelona, Spain, 2007.

[13] P. Foggia, N. Petkov, A. Saggese, N. Strisciuglio, and M. Vento,
“Reliable detection of audio events in highly noisy environ-
ments,” Pattern Recognition Letters, vol. 65, pp. 22–28, 2015.

[14] B. Elizalde, A. Kumar, A. Shah, R. Badlani, E. Vincent, B. Raj,
and I. Lane, “Experiments on the DCASE challenge 2016:
Acoustic scene classification and sound event detection in real
life recording,” in Proc. DCASE Workshop, Budapest, Hungary,
Sep. 2016, pp. 20–24.

[15] L.-H. Cai, L. Lu, A. Hanjalic, H.-J. Zhang, and L.-H. Cai,
“A flexible framework for key audio effects detection and
auditory context inference,” IEEE Trans. on Audio, Speech, and
Language Processing, vol. 14, no. 3, pp. 1026–1039, May 2006.

[16] A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen, “Acoustic

http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-large-scale-sound-event-detection
http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-large-scale-sound-event-detection


IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 13

event detection in real life recordings,” in European Signal
Processing Conference (EUSIPCO), Aalborg, Denmark, 2010.

[17] T. Heittola, A. Mesaros, A. Eronen, and T. Virtanen, “Context-
dependent sound event detection,” EURASIP J. on Audio,
Speech and Music Processing, vol. 2013, no. 1, 2013.

[18] L. Vuegen, B. V. D. Broeck, P. Karsmakers, J. F. Gemmeke,
B. Vanrumste, and H. V. Hamme, “An MFCC-GMM approach
for event detection and classification,” in IEEE WASPAA, 2013.

[19] E. Benetos, G. Lafay, M. Lagrange, and M. D. Plumbley,
“Detection of overlapping acoustic events using a temporally-
constrained probabilistic model,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
Shanghai, China, 2016.

[20] ——, “Polyphonic sound event tracking using linear dynami-
cal systems,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 25, no. 6, pp. 1266–1277, Jun. 2017.

[21] T. Heittola, A. Mesaros, T. Virtanen, and M. Gabbouj, “Su-
pervised model training for overlapping sound events based
on unsupervised source separation,” in IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP), May 2013.

[22] C. V. Cotton and D. P. W. Ellis, “Spectral vs. spectro-temporal
features for acoustic event detection,” in IEEE WASPAA, Oct.
2011, pp. 69–72.

[23] O. Dikmen and A. Mesaros, “Sound event detection using
non-negative dictionaries learned from annotated overlapping
events,” in IEEE WASPAA, 2013.

[24] J. F. Gemmeke, L. Vuegen, P. Karsmakers, B. Vanrumste, and
H. V. hamme, “An exemplar-based nmf approach to audio event
detection,” in IEEE WASPAA, Oct. 2013.

[25] A. Mesaros, T. Heittola, O. Dikmen, and T. Virtanen, “Sound
event detection in real life recordings using coupled matrix
factorization of spectral representations and class activity an-
notations,” in International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Brisbane, Australia, 2015.

[26] T. Komatsu, Y. Senda, and R. Kondo, “Acoustic event detection
based on non-negative matrix factorization with mixtures of
local dictionaries and activation aggregation,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), Shanghai, China, Mar. 2016, pp. 2259–2263.

[27] E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen, “Polyphonic
sound event detection using multi label deep neural networks,”
in 2015 International Joint Conference on Neural Networks
(IJCNN), July 2015, pp. 1–7.

[28] E. Cakir, E. C. Ozan, and T. Virtanen, “Filterbank learning for
deep neural network based polyphonic sound event detection,”
in International Joint Conference on Neural Networks (IJCNN),
Jul. 2016, pp. 3399–3406.

[29] I.-Y. Jeong, S. Lee, Y. Han, and K. Lee, “Audio event detection
using multiple-input convolutional neural network,” in Proceed-
ings of the Detection and Classification of Acoustic Scenes and
Events 2017 Workshop (DCASE2017), 2017.

[30] G. Parascandolo, H. Huttunen, and T. Virtanen, “Recurrent
neural networks for polyphonic sound event detection in real life
recordings,” in International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Shanghai, China, Mar. 2016,
pp. 6440–6444.

[31] R. Lu and Z. Duan, “Bidirectional GRU for sound event
detection,” DCASE 2017 challenge, extended abstract, Tech.
Rep., 2017.

[32] E. Çakir, G. Parascandolo, T. Heittola, H. Huttunen, and T. Vir-
tanen, “Convolutional recurrent neural networks for polyphonic
sound event detection,” IEEE/ACM Trans. on Audio, Speech and
Lang. Proc., Special Issue on Sound Scene and Event Analysis,
In press, 2017.

[33] S. Adavanne, P. Pertilä, and T. Virtanen, “Sound event detection
using spatial features and convolutional recurrent neural net-
work,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2017.

[34] J. Salamon, D. MacConnell, M. Cartwright, P. Li, and J. P.

Bello, “Scaper: A library for soundscape synthesis and aug-
mentation,” in IEEE WASPAA, Oct. 2017, pp. 344–348.

[35] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Audio
set: An ontology and human-labeled dataset for audio events,”
in IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), Mar. 2017, pp. 776–780.

[36] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, “Solving
the multiple instance problem with axis-parallel rectangles,”
Artificial intelligence, vol. 89, no. 1-2, pp. 31–71, 1997.

[37] C. Zhang, J. C. Platt, and P. A. Viola, “Multiple instance boost-
ing for object detection,” in Advances in neural information
processing systems, 2006, pp. 1417–1424.

[38] B. Babenko, N. Verma, P. Dollár, and S. J. Belongie, “Multiple
instance learning with manifold bags.” in ICML, 2011.

[39] K.-J. Hsu, Y.-Y. Lin, and Y.-Y. Chuang, “Augmented multiple
instance regression for inferring object contours in bounding
boxes,” IEEE Transactions on Image Processing, vol. 23, no. 4,
pp. 1722–1736, 2014.

[40] M. I. Mandel and D. P. Ellis, “Multiple-instance learning for
music information retrieval.” in ISMIR, 2008, pp. 577–582.

[41] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support vector
machines for multiple-instance learning,” in Advances in neural
information processing systems, 2003, pp. 577–584.

[42] Y. Chen, J. Bi, and J. Z. Wang, “Miles: Multiple-instance
learning via embedded instance selection,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 28, no. 12,
pp. 1931–1947, 2006.

[43] B. Wu, E. Zhong, A. Horner, and Q. Yang, “Music emotion
recognition by multi-label multi-layer multi-instance multi-view
learning,” in Proceedings of the 22nd ACM international con-
ference on Multimedia. ACM, 2014, pp. 117–126.

[44] F. Briggs, B. Lakshminarayanan, L. Neal, X. Z. Fern, R. Raich,
S. J. Hadley, A. S. Hadley, and M. G. Betts, “Acoustic classifi-
cation of multiple simultaneous bird species: A multi-instance
multi-label approach,” The Journal of the Acoustical Society of
America, vol. 131, no. 6, pp. 4640–4650, 2012.

[45] M.-L. Zhang and Z.-H. Zhou, “A k-nearest neighbor based al-
gorithm for multi-label classification,” in Granular Computing,
2005 IEEE International Conference on, vol. 2. IEEE, 2005.

[46] Z.-H. Zhou and M.-L. Zhang, “Multi-instance multi-label learn-
ing with application to scene classification,” in Advances in
neural information processing systems, 2007, pp. 1609–1616.

[47] A. Kumar and B. Raj, “Audio event and scene recognition: A
unified approach using strongly and weakly labeled data,” in
International Joint Conference on Neural Networks (IJCNN),
May 2017, pp. 3475–3482.

[48] ——, “Audio event detection using weakly labeled data,” in
Proceedings of the ACM Multimedia Conference (ACM-MM),
Amsterdam, The Netherlands, Oct. 2016, pp. 1038–1047.

[49] Q. Kong, Y. Xu, W. Wang, and M. D. Plumbley, “A joint
detection-classification model for audio tagging of weakly la-
belled data,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Mar. 2017, pp. 641–
645.

[50] T.-W. Su, J.-Y. Liu, and Y.-H. Yang, “Weakly-supervised audio
event detection using event-specific gaussian filters and fully
convolutional networks,” in IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), Mar. 2017, pp. 791–
795.

[51] S.-Y. Chou, J.-S. R. Jang, and Y.-H. Yang, “Framecnn: a weakly-
supervised learning framework for frame-wise acoustic event
detection and classification,” DCASE 2017 challenge, extended
abstract, Tech. Rep., 2017.

[52] J. Salamon, B. McFee, P. Li, and J. P. Bello, “DCASE 2017
submission: Multiple instance learning for sound event detec-
tion,” DCASE 2017 challenge, extended abstract, Tech. Rep.,
2017.

[53] A. Kumar, M. Khadkevich, and C. Fugen, “Knowledge transfer



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 14

from weakly labeled audio using convolutional neural network
for sound events and scenes,” in IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), Apr. 2018.

[54] Y. Xu, Q. Kong, W. Wang, and M. D. Plumbley, “Large-scale
weakly supervised audio classification using gated convolutional
neural network,” in IEEE Int. Conf. on Acoustics, Speech and
Signal Processing (ICASSP), Apr. 2018.

[55] Y. Wang and F. Metze, “A first attempt at polyphonic sound
event detection using connectionist temporal classification,” in
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Mar. 2017, pp. 2986–2990.

[56] S. Adavanne and T. Virtanen, “Sound event detection using
weakly labeled dataset with stacked convolutional and recur-
rent neural network,” in Proceedings of the Detection and
Classification of Acoustic Scenes and Events 2017 Workshop
(DCASE2017), Nov. 2017.

[57] Q. Kong, Y. Xu, W. Wang, and M. D. Plumbley, “A joint
separation-classification model for sound event detection of
weakly labelled data,” in IEEE Int. Conf. on Acoustics, Speech
and Signal Processing (ICASSP), Apr. 2018.

[58] I. Sobieraj, L. Rencker, and M. D. Plumbley, “Orthogonality-
regularized masked NMF for learning on weakly labeled audio
data,” in IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP), Apr. 2018.

[59] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine transla-
tion by jointly learning to align and translate,” in International
Conference on Learning Representations, ser. ICLR, 2015.

[60] C. Raffel and D. P. Ellis, “Feed-forward networks with attention
can solve some long-term memory problems,” in International
Conference on Learning Representations (workshop track),
2016.

[61] M. D. Zeiler and R. Fergus, “Differentiable pooling for hierar-
chical feature learning,” arXiv preprint arXiv:1207.0151, 2012.

[62] P. Swietojanski and S. Renals, “Differentiable pooling for unsu-
pervised speaker adaptation,” in Acoustics, Speech and Signal
Processing (ICASSP), 2015 IEEE International Conference on.
IEEE, 2015, pp. 4305–4309.

[63] A. Mesaros, T. Heittola, and T. Virtanen, “Metrics for
polyphonic sound event detection,” Applied Sciences, vol. 6,
no. 12, p. 162, May 2016. [Online]. Available: http:
//dx.doi.org/10.3390/app6060162

[64] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy
for urban sound research,” in 22nd ACM International Confer-
ence on Multimedia (ACM-MM’14), Nov. 2014, pp. 1041–1044.

[65] R. M. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Cannam,
and J. P. Bello, “Medleydb: A multitrack dataset for annotation-
intensive mir research.” in ISMIR, vol. 14, 2014, pp. 155–160.

[66] R. Arandjelovic and A. Zisserman, “Look, listen and learn,”
in 2017 IEEE International Conference on Computer Vision
(ICCV). IEEE, 2017, pp. 609–617.

[67] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
in 32nd Int. Conf. on Machine Learning, ser. Proceedings of
Machine Learning Research, F. Bach and D. Blei, Eds., vol. 37,
Lille, France, Jul. 2015, pp. 448–456.

[68] B. McFee, E. J. Humphrey, and J. P. Bello, “A software
framework for musical data augmentation.” in ISMIR. Citeseer,
2015, pp. 248–254.

[69] B. McFee, M. McVicar, O. Nieto, S. Balke, C. Thome,
D. Liang, E. Battenberg, J. Moore, R. Bittner, R. Yamamoto,
D. Ellis, F.-R. Stoter, D. Repetto, S. Waloschek, C. Carr,
S. Kranzler, K. Choi, P. Viktorin, J. F. Santos, A. Holovaty,
W. Pimenta, and H. Lee, “librosa 0.5.1,” may 2017. [Online].
Available: http://doi.org/10.5281/zenodo.1022770

[70] F. Chollet et al., “Keras,” 2015.
[71] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow:
A system for large-scale machine learning.” in OSDI, vol. 16,
2016, pp. 265–283.

[72] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in International Conference on Learning Rep-
resentations, ser. ICLR, 2015.

[73] B. McFee, C. Jacoby, E. J. Humphrey, and W. Pimenta,
“pescadores/pescador: 1.1.0,” Aug. 2017. [Online]. Available:
https://doi.org/10.5281/zenodo.848831

[74] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine learning research, vol. 7, no.
Jan, pp. 1–30, 2006.

[75] M. Friedman, “The use of ranks to avoid the assumption of
normality implicit in the analysis of variance,” Journal of the
american statistical association, vol. 32, no. 200, pp. 675–701,
1937.

[76] S. Holm, “A simple sequentially rejective multiple test proce-
dure,” Scandinavian journal of statistics, pp. 65–70, 1979.

Brian McFee is Assistant Professor of Music Tech-
nology and Data Science New York University. He
received the B.S. degree (2003) in Computer Science
from the University of California, Santa Cruz, and
M.S. (2008) and Ph.D. (2012) degrees in Computer
Science and Engineering from the University of
California, San Diego. His work lies at the inter-
section of machine learning and audio analysis. He
is an active open source software developer, and the
principal maintainer of the librosa package for audio
analysis.

Justin Salamon is a Senior Research Scientist
at New York University’s Music and Audio Re-
search Laboratory and Center for Urban Science and
Progress. He received a B.A. degree (2007) in Com-
puter Science from the University of Cambridge,
UK and M.Sc. (2008) and Ph.D. (2013) degrees in
Computer Science from Universitat Pompeu Fabra,
Barcelona, Spain. In 2011 he was a visiting re-
searcher at IRCAM, Paris, France. In 2013 he joined
NYU as a postdoctoral researcher, where he has been
a Senior Research Scientist since 2016. His research

focuses on the application of signal processing and machine learning to audio
signals, with applications in machine listening, music information retrieval,
bioacoustics, environmental sound analysis and open source software and data.

Juan Pablo Bello (SM16) is Associate Professor
of Music Technology and Computer Science &
Engineering at New York University. He received
the BEng degree (1998) from Universidad Simón
Bolı́var, Venezuela, and the PhD degree (2003) from
Queen Mary, University of London, UK, both in
Electronic Engineering. He is director of the Music
and Audio Research Lab (MARL), where he leads
research in digital signal processing, machine lis-
tening and music information retrieval, topics that
he teaches and in which he has published more than

100 papers and articles in books, journals and conference proceedings. His
work has been supported by public and private institutions in Venezuela, the
UK, and the US, including Frontier and CAREER awards from the National
Science Foundation and a Fulbright scholar grant for multidisciplinary studies
in France.

http://dx.doi.org/10.3390/app6060162
http://dx.doi.org/10.3390/app6060162
http://doi.org/10.5281/zenodo.1022770
https://doi.org/10.5281/zenodo.848831

	Introduction
	Our contributions

	Related work
	Sound event detection
	Multiple instance learning
	Sound event detection using weakly labeled data
	Attention and differentiable pooling

	Methods
	Multiple instance learning
	Max-pooling
	Soft-max pooling
	Auto-pooling
	Constrained auto-pooling
	Regularized auto-pooling
	Multi-label learning

	Experiments
	Datasets
	URBAN-SED
	DCASE 2017 Task 4
	MedleyDB

	Model architecture
	Training and evaluation

	Discussion
	URBAN-SED results
	DCASE 2017 results
	MedleyDB results

	Conclusion
	Biographies
	Brian McFee
	Justin Salamon
	Juan Pablo Bello


