
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 8, OCTOBER 2012 2207

Learning Content Similarity for Music
Recommendation

Brian McFee, Student Member, IEEE, Luke Barrington, and Gert Lanckriet, Member, IEEE

Abstract—Many tasks in music information retrieval, such
as recommendation, and playlist generation for online radio,
fall naturally into the query-by-example setting, wherein a user
queries the system by providing a song, and the system responds
with a list of relevant or similar song recommendations. Such
applications ultimately depend on the notion of similarity between
items to produce high-quality results. Current state-of-the-art
systems employ collaborative filter methods to represent musical
items, effectively comparing items in terms of their constituent
users. While collaborative filter techniques perform well when
historical data is available for each item, their reliance on his-
torical data impedes performance on novel or unpopular items.
To combat this problem, practitioners rely on content-based
similarity, which naturally extends to novel items, but is typically
outperformed by collaborative filter methods. In this paper, we
propose a method for optimizing content-based similarity by
learning from a sample of collaborative filter data. The optimized
content-based similarity metric can then be applied to answer
queries on novel and unpopular items, while still maintaining high
recommendation accuracy. The proposed system yields accurate
and efficient representations of audio content, and experimental
results show significant improvements in accuracy over competing
content-based recommendation techniques.

Index Terms—Audio retrieval and recommendation, collabora-
tive filters (CFs), music information retrieval, query-by-example,
structured prediction.

I. INTRODUCTION

A N effective notion of similarity forms the basis of many
applications involving multimedia data. For example, an

online music store can benefit greatly from the development
of an accurate method for automatically assessing similarity
between two songs, which can in turn facilitate high-quality
recommendations to a user by finding songs which are sim-
ilar to her previous purchases or preferences. More generally,

Manuscript received April 22, 2011; revised September 01, 2011; accepted
April 24, 2012. Date of publication June 06, 2012; date of current version Au-
gust 09, 2012. This work was supported in part by Qualcomm, Inc, eHarmony,
Inc., Yahoo! Inc., the National Science Foundation (NSF) under Grants CCF-
0830535 and IIS-1054960, an the UCSD FWGrid Project, NSF Research Infra-
structure Grant Number EIA-0303622. The associate editor coordinating the re-
view of this manuscript and approving it for publication was Prof. Bryan Pardo.

B. McFee and G. Lanckriet are with the Department of Computer Science
and Engineering, University of California at San Diego, La Jolla, CA, 92093
USA (e-mail: bmcfee@cs.ucsd.edu; gert@ece.ucsd.edu).

L. Barrington is with the Tomnod, Inc., San Diego, CA 92126 USA (e-mail:
luke@tomnod.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASL.2012.2199109

high-quality similarity can benefit any query-by-example rec-
ommendation system, wherein a user presents an example of an
item that she likes, and the system responds with, e.g., a ranked
list of recommendations.

The most successful approaches to a wide variety of recom-
mendation tasks—including not just music, but books, movies,
etc.—use collaborative filters (CF). Systems based on collabo-
rative filters exploit the “wisdom of crowds” to infer similarities
between items, and recommend new items to users by repre-
senting and comparing these items in terms of the people who
use them [1]. Within the domain of music information retrieval,
recent studies have shown that CF systems consistently out-
perform alternative methods for playlist generation [2] and se-
mantic annotation [3]. However, collaborative filters suffer from
the dreaded “cold start” problem: a new item cannot be recom-
mended until it has been purchased, and it is less likely to be
purchased if it is never recommended. Thus, only a tiny fraction
of songs may be recommended, making it difficult for users to
explore and discover new music [4].

The cold-start problem has motivated researchers to im-
prove content-based recommendation systems. Content-based
systems operate on music representations that are extracted
automatically from the audio content, eliminating the need for
human feedback and annotation when computing similarity.
While this approach naturally extends to any item regardless of
popularity, the construction of features and definition of simi-
larity in these systems are frequently ad-hoc and not explicitly
optimized for the specific task.

In this paper, we propose a method for optimizing content-
based audio similarity by learning from a sample of collabora-
tive filter data. Based on this optimized similarity measure, rec-
ommendations can then be made where no collaborative filter
data is available. The proposed method treats similarity learning
as an information retrieval problem, where similarity is learned
to optimize the ranked list of results in response to a query ex-
ample (Fig. 1). Optimizing similarity for ranking requires more
sophisticated machinery than, e.g., genre classification for se-
mantic search. However, the information retrieval approach of-
fers a few key advantages, which we argue are crucial for real-
istic music applications. First, there are no assumptions of tran-
sitivity or symmetry in the proposed method. This allows, for
example, that “The Beatles” may be considered a relevant result
for “Oasis,” but not vice versa. Second, CF data can be collected
passively from users by mining their listening histories, thereby
directly capturing their listening habits. Finally, optimizing sim-
ilarity for ranking directly attacks the main quantity of interest:
the ordered list of retrieved items, rather than coarse abstrac-
tions of similarity, such as genre agreement.

1558-7916/$31.00 © 2012 IEEE

2208 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 8, OCTOBER 2012

Fig. 1. Query-by-example recommendation engines allow a user to search for
new items by providing an example item. Recommendations are formed by com-
puting the most similar items to the query item from a database of potential rec-
ommendations.

A. Related Work

Early studies of musical similarity followed the general
strategy of first devising a model of audio content (e.g., spec-
tral clusters [5], Gaussian mixture models [6], or latent topic
assignments [7]), applying some reasonable distance function
(e.g., earth-mover’s distance or Kullback–Leibler divergence),
and then evaluating the proposed similarity model against some
source of ground truth. Logan and Salomon [5] and Aucouturier
and Pachet [6] evaluated against three notions of similarity
between songs: same artist, same genre, and human survey
data. Artist or genre agreement entail strongly binary notions
of similarity, which due to symmetry and transitivity may be
unrealistically coarse in practice. Survey data can encode subtle
relationships between items, for example, triplets of the form
“A is more similar to B than to C” [6], [8], [9]. However, the
expressive power of human survey data comes at a cost: while
artist or genre meta-data is relatively inexpensive to collect
for a set of songs, similarity survey data may require human
feedback on a quadratic (for pairwise ratings) or cubic (for
triplets) number of comparisons between songs, and is thus
impractical for large data sets.

Later work in musical similarity approaches the problem in
the context of supervised learning: given a set of training items
(songs), and some knowledge of similarity across those items,
the goal is to learn a similarity (distance) function that can
predict pairwise similarity. Slaney et al. [10] derive similarity
from web-page co-occurrence, and evaluate several supervised
and unsupervised algorithms for learning distance metrics.
McFee and Lanckriet [11] develop a metric learning algorithm
for triplet comparisons as described above. Our proposed
method follows in this line of work, but is designed to optimize
structured ranking loss (not just binary or triplet predictions),
and uses a collaborative filter as the source of ground truth.

The idea to learn similarity from a collaborative filter follows
from a series of positive results in music applications. Slaney
and White [12] demonstrate that an item-similarity metric
derived from rating data matches human perception of simi-
larity better than a content-based method. Similarly, it has been
demonstrated that when combined with metric learning, collab-
orative filter similarity can be as effective as semantic tags for
predicting survey data [11]. Kim et al. [3] demonstrated that

collaborative filter similarity vastly outperforms content-based
methods for predicting semantic tags. Barrington et al. [2]
conducted a user survey, and concluded that the iTunes Genius
playlist algorithm (which is at least partially based on collabo-
rative filters1) produces playlists of equal or higher quality than
competing methods based on acoustic content or meta-data.

Finally, there has been some previous work addressing the
cold-start problem of collaborative filters for music recommen-
dation by integrating audio content. Yoshii et al. [13] formulate
a joint probabilistic model of both audio content and collabo-
rative filter data in order to predict user ratings of songs (using
either or both representations), whereas our goal here is to use
audio data to predict the similarities derived from a collabora-
tive filter. Our problem setting is most similar to that of Stenzel
and Kamps [14], wherein a CF matrix was derived from playlist
data, clustered into latent “pseudo-genres,” and classifiers were
trained to predict the cluster membership of songs from audio
data. Our proposed setting differs in that we derive similarity at
the user level (not playlist level), and automatically learn the
content-based song similarity that directly optimizes the pri-
mary quantity of interest in an information retrieval system: the
quality of the rankings it induces.

B. Our Contributions

Our primary contribution in this work is a framework for
improving content-based audio similarity by learning from a
sample of collaborative filter data. Toward this end, we first de-
velop a method for deriving item similarity from a sample of
collaborative filter data. We then use the sample similarity to
train an optimal distance metric over audio descriptors. More
precisely, a distance metric is optimized to produce high-quality
rankings of the training sample in a query-by-example setting.
The resulting distance metric can then be applied to previously
unseen data for which collaborative filter data is unavailable.
Experimental results verify that the proposed methods signifi-
cantly outperform competing methods for content-based music
retrieval.

This paper expands on results described in a previous confer-
ence publication [15]. This paper investigates a broader class of
audio representations, provides a more thorough evaluation of
each component of the framework, and includes thorough com-
parisons to alternative methods. Notably, in comparison to the
previous work, the audio representations described here signif-
icantly improve performance relative to semantic auto-tag rep-
resentations.

C. Preliminaries

For a -dimensional vector let denote its th co-
ordinate; similarly, for a matrix , let denote its th row
and th column entry. A square, symmetric matrix
is positive semi-definite (PSD, denoted) if each of its
eigenvalues is nonnegative. For two matrices of compat-
ible dimension, the Frobenius inner product is defined as

1http://www.apple.com/pr/library/2008/09/09itunes.html

MCFEE et al.: LEARNING CONTENT SIMILARITY FOR MUSIC RECOMMENDATION 2209

Finally, let denote the binary indicator function of the event
.

II. LEARNING SIMILARITY

The main focus of this work is the following information re-
trieval problem: given a query song , return a ranked list from a
database of songs ordered by descending similarity to . In
general, the query may be previously unseen to the system, but

will remain fixed across all queries. We will assume that each
song is represented by a vector in , and similarity is computed
by Euclidean distance. Thus, for any query , a natural ordering
of is generated by sorting according to increasing dis-
tance from : .

Given some side information describing the similarity rela-
tionships between items of , distance-based ranking can be
improved by applying a metric learning algorithm. Rather than
rely on native Euclidean distance, the learning algorithm pro-
duces a PSD matrix which characterizes an opti-
mized distance

(1)

In order to learn , we will apply the metric learning to rank
(MLR) [16] algorithm (Section II-B). At a high level, MLR op-
timizes the distance metric on , i.e., so that generates
optimal rankings of songs in when using each song in as a
query. To apply the algorithm, we must provide a set of similar
songs for each training query . This is achieved
by leveraging the side information that is available for items in

. More specifically, we will derive a notion of similarity from
collaborative filter data on . So, the proposed approach opti-
mizes content-based audio similarity by learning from a sample
of collaborative filter data.

A. Collaborative Filters

The term collaborative filter (CF) is generally used to denote
to a wide variety of techniques for modeling the interactions
between a set of items and a set of users [1], [17]. Often, these
interactions are modeled as a (typically sparse) matrix where
rows represent the users, and columns represent the items. The
entry encodes the interaction between user and item .

The majority of work in the CF literature deals with de-
rived from explicit user feedback, e.g., 5-star ratings [12], [13].
While rating data can provide highly accurate representations
of user-item affinity, it also has drawbacks, especially in the do-
main of music. First, explicit ratings require active participation
on behalf of users. This may be acceptable for long-form con-
tent such as films, in which the time required for a user to rate
an item is miniscule relative to the time required to consume
it. However, for short-form content (e.g., songs), it seems unre-
alistic to expect a user to rate even a fraction of the items con-
sumed. Second, the scale of rating data is often arbitrary, skewed
toward the extremes (e.g., 1- and 5-star ratings), and may require
careful calibration to use effectively [12].

Alternatively, CF data can also be derived from implicit feed-
back. While somewhat noisier on a per-user basis than explicit
feedback, implicit feedback can be derived in much higher vol-
umes by simply counting how often a user interacts with an

item (e.g., listens to an artist) [18], [19]. Implicit feedback dif-
fers from rating data, in that it is positive and unbounded, and
it does not facilitate explicit negative feedback. As suggested
by Hu et al. [19], binarizing an implicit feedback matrix by
thresholding can provide an effective mechanism to infer posi-
tive associations.

In a binary CF matrix , each column can be interpreted
as a bag-of-users representation of item . Of central interest in
this paper is the similarity between items (i.e., columns of).
We define the similarity between two items as the Jaccard
index [20] of their user sets:

(2)

which counts the number of users shared between items and ,
and normalizes by the total number of users of and combined.

Equation (2) defines a quantitative metric of similarity be-
tween two items. However, for information retrieval applica-
tions, we are primarily interested in the most similar (relevant)
items for any query. We therefore define the relevant set for
any item as the top most similar items according to (2), i.e.,
those items which a user of the system would be shown first. Al-
though binarizing similarity in this way does simplify the notion
of relevance, it still provides a flexible language for encoding
relationships between items. Note that after thresholding, tran-
sitivity and symmetry are not enforced, so it is possible, e.g., for
The Beatles to be relevant for Oasis but not vice versa. Conse-
quently, we will need a learning algorithm which can support
such flexible encodings of relevance.

B. Metric Learning to Rank

Any query-by-example retrieval system must have at its core
a mechanism for assessing the similarity of a query to a each
item in a known database. Intuitively, the overall system should
yield better results if the underlying similarity mechanism is op-
timized according to the chosen task. In classification tasks, for
example, this general idea has led to a family of algorithms col-
lectively known as metric learning, in which a feature space
is optimized (typically by a linear transformation) to improve
performance of nearest-neighbor classification [21]–[23]. While
metric learning algorithms have been demonstrated to yield sub-
stantial improvements in classification performance, nearly all
of them are fundamentally limited to classification, and do not
readily generalize to asymmetric and non-transitive notions of
similarity or relevance. Moreover, the objective functions opti-
mized by most metric learning algorithms do not clearly relate
to ranking performance, which is of fundamental interest in in-
formation retrieval applications.

Rankings, being inherently combinatorial objects, can be
notoriously difficult to optimize. Performance measures of
rankings, e.g., area under the ROC curve (AUC) [24], are
typically non-differentiable, discontinuous functions of the
underlying parameters, so standard numerical optimization
techniques cannot be directly applied. However, in recent
years, algorithms based on the structural SVM [25] have been
developed which can efficiently optimize a variety of ranking

2210 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 8, OCTOBER 2012

Fig. 2. Left: a query point � and its relevant ��� and irrelevant ��� results;
ranking by distance from � results in poor retrieval performance. Right: after
learning an optimal distance metric with MLR, relevant results are ranked higher
than irrelevant results.

performance measures [26]–[28]. While these algorithms sup-
port general notions of relevance, they do not directly exploit
the structure of query-by-example retrieval problems.

The metric learning to rank (MLR) algorithm combines
these two approaches of metric learning and structural SVM,
and is designed specifically for the query-by-example setting
[16]. MLR learns a positive semi-definite matrix such that
rankings induced by learned distances (1) are optimized ac-
cording to a ranking loss measure, e.g., AUC, mean reciprocal
rank (MRR) [29], or normalized discounted cumulative gain
(NDCG) [30]. In this setting, “relevant” results should lie close
in space to the query , and “irrelevant” results should be
pushed far away.

For a query song , the database is ordered by sorting each
according to increasing distance from under the metric

defined by (see Fig. 2). The metric is learned by
solving a constrained convex optimization problem such that,
for each input training query , a higher score is assigned to a
correct ranking than to any other possible output ranking
in the set of all rankings (permutations of):

(3)

Here, the “score” for an input–output (query-ranking) pair
is computed by the Frobenius inner product .2 The
function produces a matrix-valued rep-
resentation of the input–output pair (described below).

computes the loss (e.g., decrease in AUC) incurred by
predicting instead of for the query , essentially playing
the role of the “margin” between rankings and . Intuitively,
the score for a correct output ranking should exceed the score
for any other ranking by at least the loss . (A correct
ranking is any one which places all relevant results before
all irrelevant results .) As in support vector machines, a slack
variable is introduced for each query to allow for margin
violations during training.

Having defined the margin constraints (3), what remains to
be specified, to learn , is the feature map and the objec-
tive function of the optimization. To define the feature map ,
we first observe that the margin constraints indicate that, for a

2The margin constraint (3) is based on a generalization of multi-class SVM,
in which the score of a correct labeling exceeds the score of an incorrect labeling
by the classification error (typically 0–1 loss) [31].

query , the predicted ranking should be that which maximizes
the score . Consequently, the (matrix-valued) fea-
ture map must be chosen so that the score maximiza-
tion coincides with the distance-ranking induced by , which
is, after all, the prediction rule we propose to use in practice,
for query-by-example recommendation (1). To accomplish this,
MLR encodes query-ranking pairs by the partial order
feature [26]:

(4)

where is the set of relevant (irrelevant) songs for ,
the ranking is encoded by

precedes in
succeeds in

and is an auxiliary (matrix-valued) feature map that
encodes the relationship between the query and an
individual item . Intuitively, decomposes the
ranking into pairs , and computes a signed
average of pairwise differences .

If places before (i.e., correctly orders and), the dif-
ference is added to , and otherwise
it is subtracted. Note that under this definition of , any two
correct rankings , have the same feature representation:

. It therefore suffices to only encode a single
correct ranking for each query to construct margin con-
straints (3) during optimization.

Since is linear in , the score also decomposes into a signed
average across pairs:

(5)
This indicates that the score for a correct ranking

(the left-hand side of (3)) will be larger when the point-wise
score is high for relevant points , and low for
irrelevant points , i.e.,

(6)

Indeed, this will accumulate only positive terms in the score
computation in (5), since a correct ranking orders all relevant
results before all irrelevant results and, thus, each in the
summation will be positive. Similarly, for incorrect rankings

, point-wise scores satisfying (6) will lead to smaller scores
. Ideally, after training, is maximally aligned to

correct rankings (i.e., achieves large margin
over scores for incorrect rankings) by (approx-
imately) satisfying (6). Consequently, at test time (i.e., in the
absence of a correct ranking), the ranking for a query is
predicted by sorting in descending order of point-wise
score [26].

This motivates the choice of used by MLR:

(7)

MCFEE et al.: LEARNING CONTENT SIMILARITY FOR MUSIC RECOMMENDATION 2211

which upon taking an inner product with , yields the negative,
squared distance between and under :

(8)

Descending point-wise score therefore corre-
sponds to increasing distance from . As a result, the ranking
predicted by descending score is equivalent to that predicted by
increasing distance from , which is precisely the ranking of
interest for query-by-example recommendation.

The MLR optimization problem is listed as Algorithm 1.
As in support vector machines [32], the objective consists of
two competing terms: a regularization term , which is
a convex approximation to the rank of the learned metric, and

provides a convex upper bound on the empirical
training loss , and the two terms are balanced by a tradeoff
parameter . Although the full problem includes a super-ex-
ponential number of constraints (one for each , for
each), it can be approximated by cutting plane optimization
techniques [16], [33].

Algorithm 1 Metric Learning to Rank [16]

Input: data ,

correct rankings ,

slack trade-off

Output: matrix

(permutations of

III. AUDIO REPRESENTATION

In order to compactly summarize audio signals, we represent
each song as a histogram over a dictionary of timbral codewords.
This general strategy has been proven effective in computer vi-
sion applications [34], as well as audio and music classifica-
tion [35]–[37]. The efficiency and ease of implementation of the
codeword histogram approach makes it an attractive choice for
audio representation.

As a first step, a codebook is constructed by clustering a
large collection of feature descriptors (Section III-A). Once the
codebook has been constructed, each song is summarized by
aggregating vector quantization (VQ) representations across
all frames in the song, resulting in codeword histograms
(Section III-B). Finally, histograms are represented in a non-
linear kernel space to facilitate better learning with MLR
(Section III-C).

A. Codebook Training

Our general approach to constructing a codebook for vector
quantization is to aggregate audio feature descriptors from a

large pool of songs into a single bag-of-features, which is then
clustered to produce the codebook.

For each song in the codebook training set —which may
generally be distinct from the MLR training set —we com-
pute the first 13 Mel frequency cepstral coefficients (MFCCs)
[38] from each half-overlapping 23-ms frame. From the time
series of MFCC vectors, we compute the first and second in-
stantaneous derivatives, which are concatenated to form a se-
quence of 39-dimensional dynamic MFCC MFCC vectors
[39]. These descriptors are then aggregated across all
to form an unordered bag of features .

To correct for changes in scale across different MFCC di-
mensions, each vector is normalized according to the
sample mean and standard deviation esti-
mated from . The th coordinate is mapped by

(9)

The normalized MFCC vectors are then clustered into a set
of codewords by k-means (specifically, an online variant of
Hartigan’s method [40]).

B. (Top-) Vector Quantization

Once the codebook has been constructed, a song is rep-
resented as a histogram over the codewords in . This pro-
ceeds in three steps: 1) a bag-of-features is computed from ’s

MFCC , denoted as ; 2) each is
normalized according to (9); 3) the codeword histogram is con-
structed by counting the frequency with which each codeword

quantizes an element of :3

(10)

Codeword histograms are normalized by the number of frames
in the song in order to ensure comparability between songs

of different lengths; may therefore be interpreted as a multi-
nomial distribution over codewords.

Equation (10) derives from the standard notion of vector
quantization (VQ), where each vector (e.g., data point) is
replaced by its closest quantizer. However, VQ can become un-
stable when a vector has multiple, (approximately) equidistant
quantizers (Fig. 3, left), which is more likely to happen as the
size of the codebook increases.

To counteract quantization errors, we generalize (10) to sup-
port multiple quantizers for each vector. For a vector , a code-
book , and a quantization threshold , we
define the quantization set

is a nearest neighbor of

The top- codeword histogram for a song is then constructed
as

(11)

3To simplify notation, we denote by � ��� the bin of histogram � corre-
sponding to the codeword � � � . Codewords are assumed to be unique, and the
usage should be clear from context.

2212 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 8, OCTOBER 2012

Fig. 3. Two close data points � � � (+) and the Voronoi partition for three
VQ codewords � � � � � � �. Left: hard VQ �� � �� assigns similar data
points to dissimilar histograms. Right: assigning each data point to its top � � �
codewords reduces noise in codeword histogram representations.

Intuitively, (11) assigns mass to each of the closest code-
words for each (Fig. 3, right). Note that when ,
(11) reduces to (10). The normalization by ensures that

, so that for , retains its interpretation as
a multinomial distribution over .

It should be noted that top- is by no means the only way to
handle over-quantization errors. In particular, the hierarchical
Dirichlet process (HDP) method proposed by Hoffman, et al.
addresses the quantization error problem (by using a proba-
bilistic encoding), as well as the issue of determining the size
of the codebook, and could easily be substituted into our frame-
work [7]. However, as demonstrated in Section IV, Algorithm 1
adequately compensates for these effects. For the sake of sim-
plicity and ease of reproducibility, we opted here to use the top-
method.

C. Histogram Representation and Distance

After summarizing each song by a codeword histogram ,
these histograms may be interpreted as vectors in . Sub-
sequently, for a query song , retrieval may be performed by
ordering according to increasing (Euclidean) distance

. After optimizing with Algorithm 1, the same
codeword histogram vectors may be used to perform retrieval
with respect to the learned metric .

However, treating codeword histograms directly as vectors
in a Euclidean space ignores the simplicial structure of multi-
nomial distributions. To better exploit the geometry of code-
word histograms, we represent each histogram in a probability
product kernel (PPK) space [41]. Inner products in this space
can be computed by evaluating the corresponding kernel func-
tion . For PPK space, is defined as

(12)

The PPK inner product in (12) is equivalent to the Bhattacharyya
coefficient [42] between and . Consequently, distance in
PPK space induces the same rankings as Hellinger distance be-
tween histograms.

Typically in kernel methods, data is represented implicitly in
a (typically high-dimensional) Hilbert space via the ma-
trix of inner products between training points, i.e., the kernel
matrix [43]. This representation enables efficient learning, even
when the dimensionality of the kernel space is much larger than
the number of points (e.g., for histogram-intersection kernels
[44]) or infinite (e.g., radial basis functions). The MLR algo-
rithm has been extended to support optimization of distances
in such spaces by reformulating the optimization in terms of

the kernel matrix, and optimizing an matrix
[45]. While kernel MLR supports optimization in arbitrary inner
product spaces, it can be difficult to scale up to large training
sets (i.e., large), and may require making some simplifying
approximations to scale up, e.g., restricting to be diagonal.

However, for the present application, we can exploit the spe-
cific structure of the probability product kernel (on histograms)
and optimize distances in PPK space with complexity that de-
pends on rather than , thereby supporting larger training
sets. Note that PPK enables an explicit representation of the data
according to a simple, coordinate-wise transformation:

(13)

which, since for all , can be interpreted as
mapping the -dimensional simplex to the -dimensional
unit sphere. Training data may therefore be represented as a

data matrix, rather than the kernel matrix. As
a result, we can equivalently apply (13) to the data, and learn a

matrix with Algorithm 1, which is more efficient
than using kernel MLR when , as is often the case in
our experiments. Moreover, the probability product kernel does
not require setting hyper-parameters (e.g., the bandwidth of a
radial basis function kernel), and thus simplifies the training
procedure.

IV. EXPERIMENTS

Our experiments are designed to simulate query-by-example
content-based retrieval of songs from a fixed database. Fig. 4
illustrates the high-level experimental setup: training and evalu-
ation are conducted with respect to collaborative filter similarity
(as described in Section II-A). In this section, we describe the
sources of collaborative filter and audio data, experimental pro-
cedure, and competing methods against which we compare.

A. Data

1) Collaborative Filter: Last.FM: Our collaborative filter
data is provided by Last.fm,4 and was collected by Celma [4, Ch.
3]. The data consists of a users-by-artists matrix of 359 347
unique users and 186 642 unique, identifiable artists; the entry

contains the number of times user listened to artist . We
binarize the matrix by thresholding at 10, i.e., a user must listen
to an artist at least ten times before we consider the association
meaningful.

2) Audio: CAL10K: For our audio data, we use the CAL10K
data set [46]. Starting from 10 832 songs by 4661 unique artists,
we first partition the set of artists into those with at least 100
listeners in the binarized CF matrix (2015, the experiment set),
and those with fewer than 100 listeners (2646, the codebook
set). We then restrict the CF matrix to just those 2015 artists in
the experiment set, with sufficiently many listeners. From this
restricted CF matrix, we compute the artist-by-artist similarity
matrix according to (2).

Artists in the codebook set, with insufficiently many lis-
teners, are held out from the experiments in Section IV-B, but
their songs are used to construct four codebooks as described
in Section III-A. From each held out artist, we randomly select

4http://www.last.fm/

MCFEE et al.: LEARNING CONTENT SIMILARITY FOR MUSIC RECOMMENDATION 2213

Fig. 4. Schematic diagram of training and retrieval. Here, “training data” en-
compasses both the subset of � used to train the metric� , and the codebook
set � used to build the codebook � . While, in our experiments, both sets are
disjoint, in general, data used to build the codebook may also be used to train
the metric.

TABLE I
STATISTICS OF CAL10K DATA, AVERAGED ACROSS TEN RANDOM

TRAINING/VALIDATION/TEST SPLITS. # RELEVANT IS THE AVERAGE NUMBER

OF RELEVANT SONGS FOR EACH TRAINING/VALIDATION/TEST SONG

one song, and extract a 5-s sequence of MFCC vectors (431
half-overlapping 23-ms frames at 22 050 Hz). These samples
are collected into a bag-of-features of approximately 1.1 mil-
lion samples, which is randomly permuted, and clustered via
online k-means in a single pass to build four codebooks of sizes

, respectively. Cluster centers are
initialized to the first (randomly selected) points. Note that
only the artists from the codebook set (and thus no artists from
the experiment set) are used to construct the codebooks. As a
result, the previous four codebooks are fixed throughout the ex-
periments in the following section.

B. Procedure

For our experiments, we generate ten random splits of the
experiment set of 2015 artists into 40% training, 30% validation,
and 30% test artists.5 For each split, the set of all training artist
songs forms the training set, which serves as the database of
“known” songs, . For each split, and for each (training/test/
validation) artist, we then define the relevant artist set as the top
10 most similar training6artists. Finally, for any song by artist
, we define ’s relevant song set, , as all songs by all artists

in ’s relevant artist set. The songs by all other training artists,
not in ’s relevant artist set, are collected into , the set of
irrelevant songs for . The statistics of the training, validation,
and test splits are collected in Table I.

5Due to recording effects and our definition of similarity, it is crucial to split
at the level of artists rather than songs [47].

6Also for test and validation artists, we restrict the relevant artist set to the
training artists to mimic the realistic setting of retrieving “known” songs from
� , given an “unknown” (test/validation) query.

For each of the four codebooks, constructed in the previous
section, each song was represented by a histogram over code-
words using (11), with . Codeword histograms
were then mapped into PPK space by (13). For comparison pur-
poses, we also experiment with Euclidean distance and MLR on
the raw codeword histograms.

To train the distance metric with Algorithm 1, we vary
. We experiment with three ranking

losses for training: area under the ROC curve (AUC), which
captures global qualities of the ranking, but penalizes mistakes
equally regardless of their position in the ranking; normalized
discounted cumulative gain (NDCG), which applies larger
penalties to mistakes at the beginning of the ranking than at
the end, and is therefore more localized than AUC; and mean
reciprocal rank (MRR), which is determined by the position
of the first relevant result, and is therefore the most localized
ranking loss under consideration here. After learning on the
training set, retrieval is evaluated on the validation set, and the
parameter setting which achieves highest AUC on the
validation set is then evaluated on the test set.

To evaluate a metric , the training set is ranked according
to distance from each test (validation) song under , and we
record the mean AUC of the rankings over all test (validation)
songs.

Prior to training with MLR, codeword histograms are com-
pressed via principal components analysis (PCA) to capture
95% of the variance as estimated on the training set. While pri-
marily done for computational efficiency, this step is similar to
the latent perceptual indexing method described by Sundaram
and Narayanan [35], and may also be interpreted as de-noising
the codeword histogram representations. In preliminary experi-
ments, compression of codeword histograms was not observed
to significantly affect retrieval accuracy in either the native or
PPK spaces (without MLR optimization).

C. Comparisons

To evaluate the performance of the proposed system, we com-
pare to several alternative methods for content-based query-by-
example song retrieval: first, similarity derived from comparing
Gaussian mixture models of MFCCs; second, an alternative
(unsupervised) weighting of VQ codewords; and third, a high-
level, automatic semantic annotation method. We also include
a comparison to a manual semantic annotation method (i.e.,
driven by human experts), which although not content-based,
can provide an estimate of an upper bound on what can be
achieved by content-based methods. For both manual and au-
tomatic semantic annotations, we will also compare to their
MLR-optimized counterparts.

1) Gaussian Mixtures: From each song, a Gaussian mix-
ture model (GMM) over its MFCCs was estimated via ex-
pectation-maximization [48]. Following Turnbull, et al. [49],
each song is represented by a GMM consisting of eight com-
ponents with diagonal covariance matrices.7 The training set
is therefore represented as a collection of GMM distributions

7In addition to yielding the best performance for the auto-tagger described in
[49], eight-component diagonal covariance GMMs yields audio representations
of comparable space complexity to the proposed VQ approach.

2214 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 8, OCTOBER 2012

. This approach is representative of many previ-
ously proposed systems in the music information retrieval liter-
ature [6], [9], [50], and is intended to serve as a baseline against
which we can compare the proposed VQ approach.

At test time, given a query song , we first estimate its GMM
. We would then like to rank each by increasing Kull-

back–Leibler (KL) divergence [51] from :

(14)

However, we do not have a closed-form expression for KL
divergence between GMMs, so we must resort to approximate
methods. Several such approximation schemes have been
devised in recent years, including variational methods and
sampling approaches [52]. Here, we opt for the Monte Carlo
approximation

(15)

where is a collection of independent samples drawn
from . Although the Monte Carlo approximation is consider-
ably slower than closed-form approximations (e.g., variational
methods), with enough samples, it often exhibits higher accu-
racy [50], [52]. Note that because we are only interested in
the rank-ordering of given , it is equivalent to order each

by increasing (approximate) cross-entropy

(16)
For efficiency purposes, for each query we fix the sample

across all . We use samples
for each query, which was found to yield stable cross-entropy
estimates in an informal, preliminary experiment.

2) TF-IDF: The algorithm described in Section II-B is a su-
pervised approach to learning an optimal transformation of fea-
ture descriptors (in this specific case, VQ histograms). Alterna-
tively, it is common to use the natural statistics of the data in an
unsupervised fashion to transform the feature descriptors. As a
baseline, we compare to the standard method of combining term
frequency-inverse document frequency (TF-IDF) [53] represen-
tations with cosine similarity, which is commonly used with
both text [53] and codeword representations [54].

Given a codeword histogram , for each , is
mapped to its TF-IDF value by8

(17)

where is computed from the statistics of the training set
by9

(18)

8Since codeword histograms are pre-normalized, there is no need to recom-
pute the term frequency in (17).

9To avoid division by 0, we define ������ � � for any codeword � which is
not used in the training set.

Intuitively, assigns more weight to codewords which
appear in fewer songs, and reduces the importance of codewords
appearing in many songs. The training set is accordingly rep-
resented by TF-IDF vectors. At test time, each is ranked
according to decreasing cosine-similarity to the query :

(19)

3) Automatic Semantic Tags: The proposed method relies
on low-level descriptors to assess similarity between songs. Al-
ternatively, similarity may be assessed by comparing high-level
content descriptors in the form of semantic tags. These tags may
include words to describe genre, instrumentation, emotion, etc.
Because semantic annotations may not be available for novel
query songs, we restrict attention to algorithms which automat-
ically predict tags given only audio content.

In our experiments, we adapt the auto-tagging method pro-
posed by Turnbull et al. [49]. This method summarizes each
song by a semantic multinomial distribution (SMD) over a vo-
cabulary of 149 tag words. Each tag is characterized by a GMM

over MFCC vectors, each of which was trained previously
on the CAL500 data set [55]. A song is summarized by a
multinomial distribution , where the th entry is computed by
the geometric mean of the likelihood of ’s MFCC vectors
under :

(20)

(Each SMD is normalized to sum to 1.) The training set
is thus described as a collection of SMDs . At
test time, is ranked according to increasing distance from the
test query under the probability product kernel10 as described in
Section III-C. This representation is also amenable to optimiza-
tion by MLR, and we will compare to retrieval performance after
optimizing PPK representations of SMDs with MLR.

4) Human Tags: Our final comparison uses semantic annota-
tions manually produced by humans, and may be interpreted as
an upper bound on the performance of automated content anal-
ysis. Each song in CAL10K includes a partially observed, bi-
nary annotation vector over a vocabulary of 1053 tags from the
Music Genome Project11. The annotation vectors are weak in the
sense that a 1 indicates that the tag applies, while a 0 indicates
only that the tag may not apply.

In our experiments, we observed the best performance by
using cosine similarity as the retrieval function, although we
also tested TF-IDF and Euclidean distances. As in the auto-tag
case, we will also compare to tag vectors after optimization by
MLR. When training with MLR, annotation vectors were com-
pressed via PCA to capture 95% of the training set variance.

10We also experimented with � -distance, � , Euclidean, and (symmetrized)
KL divergence, but PPK distance was always statistically equivalent to the best-
performing distance.

11http://www.pandora.com/mgp.shtml

MCFEE et al.: LEARNING CONTENT SIMILARITY FOR MUSIC RECOMMENDATION 2215

Fig. 5. Retrieval accuracy with vector quantized �MFCC repre-
sentations. Each grouping corresponds to a different codebook size
��� � �������������������. Each point within a group corresponds to a
different quantization threshold � � ����� �� ��. TF-IDF refers to cosine
similarity applied to IDF-weighted VQ histograms; Native refers to Euclidean
distance on unweighted VQ histograms; MLR refers to VQ histograms after
optimization by MLR; PPK MLR refers to distances after mapping VQ
histograms into probability product kernel space and subsequently optimizing
with MLR. Error bars correspond to one standard deviation across trials.

V. RESULTS

A. Vector Quantization

In a first series of experiments, we evaluate various ap-
proaches and configurations based on VQ codeword his-
tograms. Fig. 5 lists the AUC achieved by four different
approaches (Native, TF-IDF, MLR, PPK-MLR), based on VQ
codeword histograms, for each of four codebook sizes and
each of four quantization thresholds. We observe that using
Euclidean distance on raw codeword histograms12 (Native)
yields significantly higher performance for codebooks of in-
termediate size (512 or 1024) than for small (256) or large
(2048) codebooks. For the 1024 codebook, increasing results
in significant gains in performance, but it does not exceed the
performance for the 512 codebook. The decrease in accuracy
for suggests that performance is indeed sensitive to
overly large codebooks.

After learning an optimal distance metric with MLR on raw
histograms (i.e., not PPK representations) (MLR), we observe
two interesting effects. First, MLR optimization always yields
significantly better performance than the native Euclidean dis-
tance. Second, performance is much less sensitive to the choice
of codebook size and quantization threshold: all settings of for
codebooks of size at least achieve statistically equiv-
alent performance.

Finally, we observe the highest performance by combining
the PPK representation with MLR optimization (PPK-MLR).
For , the mean AUC score improves from

(Native) to (PPK-MLR). The ef-
fects of codebook size and quantization threshold are dimin-
ished by MLR optimization, although they are slightly more
pronounced than in the previous case without PPK. We may then
ask: does top- VQ provide any benefit?

Fig. 6 lists the effective dimensionality—the number of prin-
cipal components necessary to capture 95% of the training set’s

12For clarity, we omit the performance curves for native Euclidean distance on
PPK representations, as they do not differ significantly from the Native curves
shown.

Fig. 6. Effective dimensionality of codeword histograms in PPK space, i.e., the
number of principal components necessary to capture 95% of the training set’s
variance, as a function of the quantization threshold � . (The results reported in
the figure are the average effective dimension � one standard deviation across
trials.)

variance—of codeword histograms in PPK space as a function
of quantization threshold . Although for the best-performing
codebook size , each of achieves sta-
tistically equivalent performance, the effective dimensionality
varies from to . Thus,
top- VQ can be applied to dramatically reduce the dimension-
ality of VQ representations, which in turn reduces the number
of parameters learned by MLR, and therefore improves the effi-
ciency of learning and retrieval, without significantly degrading
performance.

B. Qualitative Results

Fig. 7 illustrates an example optimized similarity space pro-
duced by MLR on PPK histogram representations, as visualized
in two dimensions by t-SNE [56]. Even though the algorithm is
never exposed to any explicit semantic information, the opti-
mized space does exhibit regions which seem to capture intu-
itive notions of genre, such as hip-hop, metal, and classical.

Table II illustrates a few example queries and their top-5
closest results under the Euclidean and MLR-optimized metric.
The native space seems to capture similarities due to energy and
instrumentation, but does not necessarily match CF similarity.
The optimized space captures aspects of the audio data which
correspond to CF similarity, and produces playlists with more
relevant results.

C. Comparison

Fig. 5 lists the accuracy achieved by using TF-IDF weighting
on codeword histograms. For all VQ configurations (i.e., for
each codebook size and quantization threshold) TF-IDF signifi-
cantly degrades performance compared to MLR-based methods,
which indicates that inverse document frequency may not be as
an accurate predictor of salience in codeword histograms as in
natural language [53].

Fig. 8 shows the performance of all other methods
against which we compare. First, we observe that raw SMD
representations provide more accurate retrieval than both the
GMM approach and raw VQ codeword histograms (i.e., prior
to optimization by MLR). This may be expected, as previous
studies have demonstrated superior query-by-example retrieval

2216 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 8, OCTOBER 2012

Fig. 7. A t-SNE visualization of the optimized similarity space produced by PPK+MLR on one training/test split of the data ���� � ����� � � ��. Close-ups on
three peripheral regions reveal hip-hop (upper-right), metal (lower-left), and classical (lower-right) genres.

TABLE II
EXAMPLE PLAYLISTS GENERATED BY 5-NEAREST (TRAINING) NEIGHBORS OF THREE DIFFERENT QUERY (TEST) SONGS (LEFT) USING EUCLIDEAN DISTANCE ON

RAW CODEWORD HISTOGRAMS (CENTER) AND MLR-OPTIMIZED PPK DISTANCES (RIGHT). RELEVANT RESULTS ARE INDICATED BY

performance when using semantic representations of multi-
media data [57], [58].

Moreover, SMD and VQ can be optimized by MLR to achieve
significantly higher performance than raw SMD and VQ, re-
spectively. The semantic representations in SMD compress the
original audio content to a small set of descriptive terms, at
a higher level of abstraction. In raw form, this representation
provides a more robust set of features, which improves recom-
mendation performance compared to matching low-level con-
tent features that are often noisier. On the other hand, semantic
representations are inherently limited by the choice of vocabu-
lary and may prematurely discard important discriminative in-
formation (e.g., subtle distinctions within sub-genres). This ren-
ders them less attractive as starting point for a metric learning
algorithm like MLR, compared to less-compressed (but pos-
sibly noisier) representations, like VQ. Indeed, the latter may

retain more information for MLR to learn an appropriate simi-
larity function. This is confirmed by our experiments: MLR im-
proves VQ significantly more than it does for SMD. As a result,
MLR-VQ outperforms all other content-based methods in our
experiments.

Finally, we provide an estimate of an upper bound on what
can be achieved by automatic, content-based methods, by eval-
uating the retrieval performance when using manual annota-
tions (Tag in Fig. 8): with cosine similarity, and

with MLR-optimized similarity. The improve-
ment in accuracy for human tags, when using MLR, indicates
that even handcrafted annotations can be improved by learning
an optimal distance over tag vectors. By contrast, TF-IDF on
human tag vectors decreases performance to , indi-
cating that IDF does not accurately model (binary) tag salience.
The gap in performance between content-based methods and

MCFEE et al.: LEARNING CONTENT SIMILARITY FOR MUSIC RECOMMENDATION 2217

Fig. 8. Comparison of VQ-based retrieval accuracy to competing methods. VQ
corresponds to a codebook of size � � ���� with quantization threshold � �

�. Tag-based methods (red) use human annotations, and are not automatically
derived from audio content. Error bars correspond to one standard deviation
across trials.

manual annotations suggests that there is still room for improve-
ment. Closing this gap may require incorporating more complex
features to capture rhythmic and structural properties of music
which are discarded by the simple timbral descriptors used here.

VI. CONCLUSION

In this paper, we have proposed a method for improving
content-based audio similarity by learning from a sample of
collaborative filter data. Collaborative filters form the basis of
state-of-the-art recommendation systems, but cannot directly
form recommendations or answer queries for items which have
not yet been consumed or rated. By optimizing content-based
similarity from a collaborative filter, we provide a simple
mechanism for alleviating the cold-start problem and extending
music recommendation to novel or less known songs.

By using implicit feedback in the form of user listening his-
tory, we can efficiently collect high-quality training data without
active user participation, and as a result, train on larger collec-
tions of music than would be practical with explicit feedback or
survey data. Our notion of similarity derives from user activity
in a bottom-up fashion, and obviates the need for coarse simpli-
fications such as genre or artist agreement.

Our proposed top- VQ audio representation enables efficient
and compact description of the acoustic content of music data.
Combining this audio representation with an optimized distance
metric yields similarity calculations which are both efficient to
compute and substantially more accurate than competing con-
tent-based methods. The proposed metric learning framework
is robust with respect to the choice of codebook size and VQ
threshold , and yields stable performance over a broad range
of VQ configurations.

While in this work, our focus remains on music recommen-
dation applications, the proposed methods are quite general,
and may apply to a wide variety of applications involving con-
tent-based similarity, such as nearest-neighbor classification of
audio signals.

REFERENCES

[1] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative
filtering to weave an information tapestry,” Commun. ACM, vol. 35, pp.
61–70, Dec. 1992.

[2] L. Barrington, R. Oda, and G. Lanckriet, “Smarter than genius? Human
evaluation of music recommender systems,” in Proc. 10th Int. Conf.
Music Inf. Retrieval, 2009.

[3] J. Kim, B. Tomasik, and D. Turnbull, “Using artist similarity to propa-
gate semantic information,” in Proc. 10th Int. Soc. Music Inf. Retrieval
Conf., ser. ISMIR, 2009.

[4] O. Celma, Music Recommendation and Discovery in the Long Tail.
New York: Springer, 2010.

[5] B. Logan and A. Salomon, “A music similarity function based on signal
analysis,” in Proc. IEEE Int. Conf. Multimedia and Expo, 2001, pp.
745–748.

[6] J.-J. Aucouturier and F. Pachet, “Music similarity measures: What’s the
use?,” in Proc. 3rd Int. Conf. Music Inf. Retrieval, ser. ISMIR, 2002, pp.
157–163.

[7] M. Hoffman, D. Blei, and P. Cook, “Content-based musical similarity
computation using the hierarchical Dirichlet process,” in Proc. 9th Int.
Conf. Music Inf. Retrieval, ser. ISMIR, 2008, pp. 349–354.

[8] D. Ellis, B. Whitman, A. Berenzweig, and S. Lawrence, “The quest for
ground truth in musical artist similarity,” in Proc. 2nd Int. Symp. Music
Inf. Retrieval, ser. ISMIR, Oct. 2002, pp. 170–177.

[9] A. Berenzweig, B. Logan, D. P. Ellis, and B. Whitman, “A large-scale
evaluation of acoustic and subjective music-similarity measures,”
Comput. Music J., vol. 28, no. 2, pp. 63–76, 2004.

[10] M. Slaney, K. Weinberger, and W. White, “Learning a metric for music
similarity,” in Proc. 9th Int. Conf. Music Inf. Retrieval, ser. ISMIR, Sep.
2008, pp. 313–318.

[11] B. McFee and G. Lanckriet, “Learning multi-modal similarity,” J.
Mach. Learn. Res., vol. 12, pp. 491–523, Feb. 2011.

[12] M. Slaney and W. White, “Similarity based on rating data,” in Proc.
8th Int. Conf. Music Inf. Retrieval, ser. ISMIR, 2007, pp. 479–484.

[13] K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H. Okuno, “An effi-
cient hybrid music recommender system using an incrementally train-
able probabilistic generative model,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 16, no. 2, pp. 435–447, Feb. 2008.

[14] R. Stenzel and T. Kamps, “Improving content-based similarity mea-
sures by training a collaborative model,” in Proc. 6th Int. Conf. Music
Inf. Retrieval, ser. ISMIR, 2005, pp. 264–271.

[15] B. McFee, L. Barrington, and G. Lanckriet, “Learning similarity from
collaborative filters,” in Proc. 11th Int. Soc. Music Inf. Retrieval Conf.,
ser. ISMIR, 2010.

[16] B. McFee and G. Lanckriet, J. Fürnkranz and T. Joachims, Eds.,
“Metric learning to rank,” in Proc. 27th Int. Conf. Mach. Learn., ser.
ICML, Haifa, Israel, Jun. 2010, pp. 775–782.

[17] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-based collab-
orative filtering recommendation algorithms,” in Proc. 10th Int. Conf.
World Wide Web, ser. WWW ’01., New York, 2001, pp. 285–295.

[18] M. Deshpande and G. Karypis, “Item-based top-n recommendation al-
gorithms,” ACM Trans. Inf. Syst., vol. 22, pp. 143–177, Jan. 2004.

[19] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in Proc. 8th IEEE Int. Conf. Data Mining, ser.
ICDM, 2008, pp. 263–272.

[20] P. Jaccard, “Étude comparative de la distribution florale dans une por-
tion des alpes et des jura,” Bull. del la Soc. Vaudoise des Sciences Na-
turelles, vol. 37, pp. 547–579, 1901.

[21] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, “Distance metric
learning, with application to clustering with side-information,” in Ad-
vances in Neural Information Processing Systems, Ser. NIPS. Cam-
bridge, MA: MIT Press, 2003, pp. 505–512.

[22] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning
for large margin nearest neighbor classification,” in Advances in Neural
Information Processing Systems, ser. NIPS, Y. Weiss, B. Schölkopf,
and J. Platt, Eds. Cambridge, MA: MIT Press, 2006, pp. 451–458.

[23] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-
theoretic metric learning,” in Proc. 24th Int. Conf. Machine learning,
ser. ICML., New York, 2007, pp. 209–216.

[24] J. P. Egan, Signal Detection Theory and ROC Analysis, Ser. Series in
Cognition and Perception. New York: Academic, 1975.

[25] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large
margin methods for structured and interdependent output variables,”
J. Mach. Learn. Res., vol. 6, pp. 1453–1484, 2005.

[26] T. Joachims, “A support vector method for multivariate performance
measures,” in Proc. 22nd Int. Conf. Mach. Learn., ser. ICML., New
York, 2005, pp. 377–384.

[27] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A support vector
method for optimizing average precision,” in Proc. 30th Annu. Int.
ACM SIGIR Conf. Res. Develop. Inf. Retrieval, ser. SIGIR., New York,
2007, pp. 271–278.

2218 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 8, OCTOBER 2012

[28] S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhattacharyya, “Struc-
tured learning for non-smooth ranking losses,” in Proc. 14th ACM
SIGKDD Int. Conf. Knowl. Discov. and Data Mining, ser. KDD., New
York, 2008, pp. 88–96.

[29] E. M. Voorhees, “Overview of the trec 2001 question answering track,”
in Proc. 10th Text Retrieval Conf. (TREC), 2001, pp. 42–51.

[30] K. J. Kekäläinen, “Ir evaluation methods for retrieving highly relevant
documents,” in Proc. 23rd Annu. Int. ACM SIGIR Conf.n Res. Develop.
in Inf. Retrieval, ser. SIGIR., New York, 2000, pp. 41–48.

[31] K. Crammer and Y. Singer, “On the algorithmic implementation of
multiclass kernel-based vector machines,” J. Mach. Learn. Res., vol. 2,
pp. 265–292, 2002.

[32] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Sep. 1995.

[33] T. Joachims, T. Finley, and C.-N. J. Yu, “Cutting-plane training of
structural SVMs,” Mach. Learn., vol. 77, no. 1, pp. 27–59, 2009.

[34] L. Fei-Fei and P. Perona, “A Bayesian hierarchical model for learning
natural scene categories,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recogn., ser. CVPR, 2005, pp. 524–531.

[35] S. Sundaram and S. Narayanan, “Audio retrieval by latent perceptual
indexing,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
ser. ICASSP, 2008, pp. 49–52.

[36] K. Seyerlehner, G. Widmer, and P. Knees, “Frame level audio simi-
larity—A codebook approach,” in Proc. 11th Int. Conf. Digital Audio
Effects, ser. DAFx, Espoo, Finland, 2008.

[37] M. Hoffman, D. Blei, and P. Cook, “Easy as CBA: A simple proba-
bilistic model for tagging music,” in Proc. 10th Int. Conf. Music Inf.
Retrieval, ser. ISMIR, 2009.

[38] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition.
Upper Saddle River, NJ: Prentice-Hall, 1993.

[39] C. Buchanan, “Semantic-based audio recognition and retrieval,” M.S.
thesis, School of Informatics, Univ. of Edinburgh, Edinburgh, U.K.,
1995.

[40] J. A. Hartigan, Clustering Algorithms. New York: Wiley, 1975.
[41] T. Jebara, R. Kondor, and A. Howard, “Probability product kernels,” J.

Mach. Learn. Res., vol. 5, pp. 819–844, Dec. 2004.
[42] A. Bhattacharyya, “On a measure of divergence between two statistical

populations defined by probability distributions,” Bull. Calcutta Math.
Soc., vol. 35, pp. 99–109, 1943.

[43] B. Schölkopf and A. Smola, Learning With Kernels. Cambridge, MA:
MIT Press, 2002.

[44] A. Barla, F. Odone, and A. Verri, “Histogram intersection kernel for
image classification,” in Proc. Int. Conf. Image Process., ser. ICIP,
2003, vol. 3, pp. III-513–III-16.

[45] C. Galleguillos, B. McFee, S. Belongie, and G. Lanckriet, “From region
similarity to category discovery,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recogn., ser. CVPR, 2011, pp. 2665–2672.

[46] D. Tingle, Y. Kim, and D. Turnbull, “Exploring automatic music anno-
tation with acoustically-objective tags,” in Proc. IEEE Int. Conf. Mul-
timedia Inf. Retrieval, 2010.

[47] B. Whitman, G. Flake, and S. Lawrence, “Artist detection in music with
minnowmatch,” in Proc. IEEE Signal Process. Soc. Workshop, Neural
Netw. for Signal Process. XI, 2001, pp. 559–568.

[48] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. R. Statist. Soc. Ser. B
(Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[49] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet, “Semantic an-
notation and retrieval of music and sound effects,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 16, no. 2, pp. 467–476, Feb. 2008.

[50] J. Jensen, D. Ellis, M. Christensen, and S. Jensen, “Evaluation of dis-
tance measures between gaussian mixture models of MFCCs,” in Proc.
8th Int. Conf. Music Inf. Retrieval, ser. ISMIR, 2007, pp. 107–108.

[51] S. Kullback, Information Theory and Statistics, 2nd ed. New York:
Dover, 1968.

[52] J. Hershey and P. Olsen, “Approximating the Kullback Leibler diver-
gence between gaussian mixture models,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., ser. ICASSP, 2007, vol. 4, pp.
IV-317–IV-320.

[53] G. Salton and C. Buckley, “Term weighting approaches in automatic
text retrieval,” Ithaca, NY, 1987.

[54] J. Sivic and A. Zisserman, “Video google: A text retrieval approach
to object matching in videos,” in Proc. 9th IEEE Int. Conf. Comput.
Vis.—Vol. 2, ser. ICCV ’03., Washington, DC, 2003, p. 1470 [Online].
Available: http://portal.acm.org/citation.cfm?id=946247.946751

[55] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet, “Towards mu-
sical query-by-semantic-description using the cal500 data set,” in Proc.
30th Annu. Int. ACM SIGIR Conf. Res. Develop. in Inf. Retrieval, ser.
SIGIR., New York, 2007, pp. 439–446.

[56] L. van der Maaten and G. Hinton, “Visualizing high-dimensional data
using t-SNE,” J. Mach. Learn. Res., vol. 9, pp. 2579–2605, 2008.

[57] N. Rasiwasia, P. Moreno, and N. Vasconcelos, “Bridging the gap:
Query by semantic example,” IEEE Trans. Multimedia, vol. 9, no. 5,
pp. 923–938, Aug. 2007.

[58] L. Barrington, A. Chan, D. Turnbull, and G. Lanckriet, “Audio infor-
mation retrieval using semantic similarity,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., ser. ICASSP, Apr. 2007, vol. 2, pp.
II-725–II-728.

Brian McFee (S’10) received the B.S. degree in
computer science from the University of California,
Santa Cruz, in 2003 and the M.S. degree in computer
science and engineering from the University of
California at San Diego (UCSD), La Jolla, in 2008.
He is currently pursuing a Ph.D. degree in computer
science and engineering at UCSD.

His research focuses on machine learning, with
applications in music information retrieval and
recommendation.

Mr. McFee was a recipient of the Qualcomm In-
novation Fellowship in 2010.

Luke Barrington received the Ph.D. degree in elec-
trical and computer engineering from the University
of California at San Diego (UCSD), La Jolla, with a
thesis titled “Machines that Understand Music.”

He developed frequency-temporal models of
music that learned to automatically describe audio
content with relevant words. He pioneered research
in human computation and crowd sourcing as a
means to train machine learning models. During the
Ph.D. degree, he co-founded the UCSD Computer
Audition Laboratory, published over 20 articles in

journals and conferences, and was awarded two patents. He currently serves as
founder and CTO of Tomnod, inc., where he leads the development of online
applications that collect analyses of satellite and aerial imagery data from tens
of thousands of users.

Dr. Barrington received the UCD Young Engineer of the year in 2001. In
2005, he was a National Science Foundation (NSF) EAPSI Fellow in Japan.
From 2006 to 2008, he was the recipient of a U.S. NSF IGERT Fellowship and in
2010 he received the Qualcomm Innovation Fellowship. He is an avid musician
and wails on the guitar.

Gert Lanckriet (M’10) received the M.S. degree
in electrical engineering from the Katholieke Uni-
versiteit Leuven, Leuven, Belgium, in 2000 and the
M.S. and Ph.D. degrees in electrical engineering and
computer science from the University of California,
Berkeley, in 2001 and 2005, respectively.

In 2005, he joined the Department of Electrical
and Computer Engineering, University of California
at San Diego, La Jolla, where he heads the Computer
Audition Laboratory. His research focuses on the
interplay of convex optimization, machine learning,

and signal processing, with applications in computer audition and music
information retrieval.

Prof. Lanckriet was awarded the SIAM Optimization Prize in 2008 and is the
recipient of a Hellman Fellowship, an IBM Faculty Award, an NSF CAREER
Award, and an Alfred P. Sloan Foundation Research Fellowship. In 2011, MIT
Technology Review named him one of the 35 top young technology innovators
in the world (TR35).

