
LEARNING SIMILARITY FROM COLLABORATIVE FILTERS

Brian McFee Luke Barrington∗ Gert Lanckriet∗
Computer Science and Engineering ∗Electrical and Computer Engineering

University of California, San Diego
bmcfee@cs.ucsd.edu lukeinusa@gmail.com gert@ece.ucsd.edu

ABSTRACT

Collaborative filtering methods (CF) exploit the wis-
dom of crowds to capture deeply structured similarities in
musical objects, such as songs, artists or albums. When
CF is available, it frequently outperforms content-based
methods in recommendation tasks. However, songs in the
so-called “long tail” cannot reap the benefits of collabora-
tive filtering, and practitioners must rely on content-based
methods. We propose a method for improving content-
based recommendation in the long tail by learning an op-
timized similarity function from a sample of collabora-
tive filtering data. Our experimental results demonstrate
substantial improvements in accuracy by learning optimal
similarity functions.

1. INTRODUCTION

“Collaborative filtering” (CF) is a popular method for multi-
media recommendation applications in which data (e.g.,
songs, artists, books or movies) are represented and com-
pared in terms of the people who use them. Systems based
on collaborative filtering exploit the “wisdom of crowds”
to define similarity between items, which can then be used
for recommendation. Indeed, collaborative filtering sys-
tems benefit from several attractive properties: CF explic-
itly represents individual users, and is therefore inherently
personalized; data collection can be done passively, rather
than requiring users to actively tag items; and CF data di-
rectly captures usage habits: exactly the quantity that rec-
ommendation engines strive to affect.

It is therefore not surprising that CF methods have be-
come an active research topic in recent years, due in no
small part to the recently concluded competition for the
Netflix Prize [1]. Within the Music Information Retrieval
(MIR) community, recent studies have shown that CF sys-
tems consistently outperform content-based methods for
playlist generation [6] and tag prediction [15]. However,
collaborative filtering suffers from the dreaded “cold start”
problem: CF methods fail on items which have not yet
been used, and are therefore unsuitable for recommenda-
tion in the “long tail”. While this problem persists for all

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.

media (e.g., movies, books, etc.), it is especially deadly
in music, due to the relatively large number of unknown
songs and artists in the world today. Netflix boasts 100,000
DVD titles [1], while Apple’s iTunes store provides access
to over 13 million songs [2].

Motivated by the cold-start problem, MIR researchers
have worked steadily to improve content-based recommen-
dation engines. Content-based systems operate solely on
feature representations of music, eliminating the need for
human intervention. While this approach naturally extends
to long-tail data, the definition of similarity in these sys-
tems is frequently ad-hoc and not explicitly optimized for
the specific task. As a result, it remains unclear if, or to
what extent, content-based systems can capture relevant
similarity information expressed by collaborative filtering.

In this paper, we pose the question: can we learn content-
based similarity from a collaborative filter? Empirically,
CF data provides a highly reliable means for determining
similarity between musical objects. Our main contribution
in this paper is a method for optimizing content-based sim-
ilarity by learning from a collaborative filter.

The proposed method treats similarity learning as an
information retrieval problem, where similarity is evalu-
ated according to the ranked list of results in response to a
query example, e.g., a list of artists ordered by similarity to
“The Beatles”. Optimizing similarity for ranking requires
more sophisticated machinery than is used in other meth-
ods, e.g., genre classifiers. However, it does offer a few key
advantages, which we believe are crucial for realistic music
applications. First, there are no assumptions of transitivity
or symmetry in the proposed method. As a result, “The
Beatles” may be considered a relevant result for “Oasis”,
and not vice versa; this is not possible with other methods
in the literature, e.g., the embedding technique described
in [21]. Second, CF data can be collected passively from
users (e.g., via scrobbles [16]) and directly captures their
listening habits. Finally, optimizing similarity for ranking
directly attacks the main quantity of interest, i.e., the or-
dered list of retrieved items, rather than potentially irrele-
vant or overly coarse abstractions (e.g., genre).

Our proposed method is quite general, and can improve
similarities derived from semantic descriptions provided
by humans or an auto-tagging engine. As we will demon-
strate, even hand-crafted song annotations can be optimized
to more accurately reflect and predict the similarity struc-
ture encoded by collaborative filtering data.

1.1 Related work

A significant amount of research has been devoted to the
topic of musical similarity in the past decade. Ellis, et
al. [9] evaluated similarity metrics derived from various
data sources against human survey data. Similarly, Kim,
et al. [15] evaluate several sources of artist similarity for a
tag prediction task, and observe that methods based on col-
laborative filtering significantly out-perform acoustic or se-
mantic similarity. However, neither of these works attempt
to optimize similarity for a specific task.

Slaney, et al. [21] apply several learning algorithms to
find similarity metrics over acoustic features which are op-
timized to cluster songs of the same artist, album, or that
appear on the same blog. Our previous work [19] applies
similar techniques to predict human survey data and op-
timally integrate multiple data sources. The method pro-
posed here falls squarely within this line of work, but dif-
fers in that the metric is trained from collaborative filtering,
and optimized for ranking performance, rather than classi-
fication or (comparatively scarce) human survey data.

There is a large body of work which treats collaborative
filtering as a matrix completion problem (see, e.g., [24]).
In the matrix completion view, the goal is to perform user-
centric recommendation by filling in missing entries of the
users-by-content matrix, i.e., recommending content to a
user based on his or her specific preferences. Our applica-
tion here is slightly different: rather than trying to complete
the matrix, we interpret the collaborative filtering matrix
as the ground truth, from which, similarity can be derived.
Our goal is to train a content-based system to match simi-
larities derived from CF data. We also stress that our pro-
posed method is not a hybrid method: once the metric has
been trained, collaborative filtering data is not necessary to
compute similarities for unseen, long-tail songs.

2. LEARNING SIMILARITY

Our goal is to learn an optimal similarity function for songs,
and as such, we must choose a family of similarity func-
tions over which to optimize. Many families of similarity
functions have been proposed in the MIR literature, such as
distance between generative models of acoustic [3, 17] or
semantic [5] descriptors, and playlist-based similarity [18].

Here, we opt for Euclidean distance between song rep-
resentations. The primary reason for this choice is that Eu-
clidean distance naturally lends itself to optimization by
metric learning (see, e.g., [19, 21]). In metric learning,
each data point is described by a vector in Rd, and the goal
is to learn a linear projection matrix L such that distances
after projection (‖Li − Lj‖) are small for “similar” pairs
(i, j) and large for “dissimilar” pairs. Due to computa-
tional issues, optimization is performed not on L, but on
a positive semi-definite 1 (PSD) matrix W = LTL � 0.
In the metric defined by W , distance between points (i, j)

1 A positive semi-definite matrix W , denoted W � 0 is square, sym-
metric, and has non-negative eigenvalues.

q

q

W

Ranking by distance from q: Ranking by distance from q:

1 2 3 4 1 2 3 4

Figure 1. Metric Learning to Rank (MLR) learns a met-
ric (W) so that a query song q is close to relevant results
(+) and far from irrelevant results (-). Optimization is per-
formed with respect to the rankings induced by distance
from the query.

after projection is denoted by the quadratic form

d(i, j) = ‖i− j‖2W = (i− j)TW (i− j)
= (i− j)TLTL(i− j) = ‖Li− Lj‖2. (1)

For the present application, we apply the Metric Learn-
ing to Rank (MLR) algorithm [20]. Here, we provide a
brief overview of the algorithm.

2.1 Metric learning to rank

Metric Learning to Rank (MLR) [20] is an extension of
Structural SVM [13]. Structural SVM has been demon-
strated to be an effective method for solving ranking prob-
lems in information retrieval systems [8], and the MLR al-
gorithm extends the methodology to the query-by-example
setting by learning a metric space, rather than a discrim-
inant vector. Specifically, MLR learns a positive semi-
definite matrix W such that rankings induced by learned
distances are optimized according to a ranking loss mea-
sure, e.g., ROC area (AUC) or precision-at-k. In this set-
ting, “relevant” results should lie close in space to the query
q, and “irrelevant” results should be pushed far away.

For a query song q, a natural ordering of the database
X is obtained by sorting x ∈ X according to increasing
distance from q under the metric defined by W (see Fig-
ure 1). The metric W is learned by solving a constrained
optimization problem such that, for each training query q,
a higher score is assigned to the “true” ranking y∗q than to
any other ranking y ∈ Y (the set of all rankings):

〈W,ψ(q, y∗q)〉 ≥ 〈W,ψ(q, y)〉+ ∆(y∗q , y)− ξq. (2)

Here, the “score” for a query-ranking pair (q, y) is com-
puted by the Frobenius inner product:

〈W,ψ(q, y)〉 = tr(Wψ(q, y)). (3)

ψ(q, y) is a matrix-valued feature map which encodes the
query-ranking pair (q, y), and ∆(y∗q , y) computes the loss
incurred by predicting y instead of y∗q for the query q (e.g.,

Algorithm 1 Metric Learning to Rank [20]
Input: data X = {q1, q2, . . . , qn} ⊂ Rd,

true rankings y∗1 , y
∗
2 , . . . y

∗
n,

slack trade-off C ≥ 0
Output: d× d matrix W � 0

min
W�0,ξ

tr(W) + C · 1
n

∑
q∈X

ξq

s. t. ∀q ∈ X , ∀y ∈ Y \ {y∗q} :

〈W,ψ(q, y∗q)〉 ≥ 〈W,ψ(q, y)〉+ ∆(y∗q , y)− ξq
ξq ≥ 0

loss in AUC score), essentially playing the role of the “mar-
gin” between rankings y∗q and y. Intuitively, the score for
a true ranking y∗q should exceed the score for any other y
by at least the loss ∆(y∗q , y). (In the present context, the
“true” ranking is any one which places all relevant results
before all irrelevant results.) To allow violations of mar-
gins during training, a slack variable ξq ≥ 0 is introduced
for each query.

MLR encodes query-ranking pairs (q, y) by the partial
order feature [13]:

ψ(q, y) =
∑
i∈X+

q

∑
j∈X−q

yij

(
φ(q, i)− φ(q, j)
|X+
q | · |X−q |

)
, (4)

where X+
q (resp. X−q) is the set of relevant (resp. irrele-

vant) songs for q, the ranking y is encoded by

yij =

{
+1 i before j in y
−1 i after j

,

and
φ(q, i) = −(q − i)(q − i)T (5)

captures the affinity between the query q and a single item
i. Intuitively, ψ is constructed by adding the difference
φ(q, i)− φ(q, j) whenever y places (relevant) i before (ir-
relevant) j and subtracted otherwise. This choice of ψ
therefore emphasizes directions in the feature space which
are correlated with good rankings.

For a test query q′, the predicted ranking y is that which
achieves the highest score byW , i.e., argmaxy〈W,ψ(q′, y)〉.
This can be found efficiently by sorting the corpus in de-
scending order of 〈W,φ(q′, x)〉. Equation 5 defines φ so
that when taking the inner product with W ,

〈W,φ(q′, x)〉 = − tr
(
W (q′ − x)(q′ − x)T

)
(6)

= −(q′ − x)TW (q′ − x) = −‖q′ − x‖2W ,

the result is the (negative, squared) distance between q′

and x under the metric defined by W . Thus, decreasing
〈W,φ(q′, x)〉 corresponds to increasing distance from q′.

The MLR optimization problem is listed as Algorithm 1.
As in support vector machines, the objective consists of
two competing terms: tr(W) is a convex approximation
to the rank of the learned metric, and 1/n

∑
ξq measures

the empirical (hinge) loss on the training set, and the two

terms are balanced by a trade-off parameter C. Although
the full problem includes a super-exponential number of
constraints (one for each y ∈ Y , for each q), [20] de-
scribes an efficient approximation algorithm based on cut-
ting planes [14] which works well in practice.

3. DATA

Since our goal is to learn a content-based similarity metric
for songs, it would seem logical to derive similarity from
CF data relating users to songs. However, in practice, such
matrices tend to exhibit high sparsity, which would lead to
unstable similarity computations. We instead opt to derive
similarity at the artist level, and then transfer similarity to
the song level. Given a set of artists, and a collaborative
filtering matrix over the artists, our experimental procedure
is as follows:

1. extract artist similarity from the CF data,
2. transfer artist similarity to song similarity,
3. construct a feature representation for each song,
4. learn a metric W over song representations to pre-

dict song similarities, and
5. evaluate W by testing retrieval of similar songs in

response to (unseen) test songs.

Steps 1 and 2 are described in Section 3.2, and step 3 is
described throughout Section 3.3. Next, we describe the
sources of our audio and collaborative filtering data.

3.1 Swat10k

Our experiments use the Swat10k dataset of 10,870 songs
from 3,748 unique artists [22]. Each song has been weakly-
labeled from a vocabulary of 1,053 tags from Pandora’s
Music Genome Project 2 that include multiple genres and
acoustically objective descriptors.

3.2 Collaborative filtering

To define similarity between songs, we use the collabora-
tive filtering (CF) data mined from Last.fm 3 by [7]. The
raw collaborative filtering matrix consists of approximately
17.5 million user-song interactions over 359K users and
186K artists with MusicBrainz 4 identifiers (MBIDs).

We first filtered the CF matrix down to include only the
Swat10k artists by matching MBIDs, resulting in a reduced
CF matrix F :

Fui =

{
1 user u listened to artist i
0 otherwise,

(7)

of 356,026 users and 3,748 artists.
From the CF matrix, we define the similarity between

artists i and j as the cosine-similarity between the column-
vectors Fi and Fj :

Sij =
FT
i Fj

‖Fi‖ · ‖Fj‖
. (8)

2 http://www.pandora.com/mgp.shtml
3 http://last.fm
4 http://www.musicbrainz.org/

Training Validation Test Discard
Artists 746 700 700 1602
Songs 1842 1819 1862 5347
Relevant 39.5 37.7 36.4

Table 1. Statistics of the Swat10k data. “# Relevant” is the
average size of the relevant set for each song.

Intuitively, Sij counts the number of users shared between
artists i and j, and normalizes by popularity.

To ensure stable similarity measurements, we discarded
all artists from the set which had fewer than 100 users. This
leaves 2,146 artists, which we split roughly into thirds for
training, validation, and test sets. For each artist, we then
define the set of “relevant” artists as the 10 closest training
artists according to Equation 8 5 .

Finally, we convert artist-level relevance to song-level
relevance. For each song of an artist a, the relevant set
is the union of the sets of songs from each of a’s relevant
artists. Table 1 summarizes the statistics of the data used
in our experiments.

3.3 Features

For each song in our database, we construct three different
feature representations: acoustic, auto-tags, and tags pro-
vided by human labelers.

3.3.1 Vector quantized MFCCs

Our representation of acoustic features is based upon vector-
quantized Mel-Frequency Cepstral Coefficients (MFCCs),
and consists of a 3-step process: feature extraction, vec-
tor quantization, and kernelization. The method described
here is similar to that of [12], and is inspired by similar
methods found in the computer vision literature [10].

First, for each song, we extract the first 13 MFCCs from
25ms half-overlapping windows. Each MFCC vector is
augmented by appending the first and second instantaneous
time derivatives, resulting in a sequence of 39-dimensional
delta-MFCC (∆MFCC) vectors for each song.

Using the songs which were discarded due to insuffi-
cient collaborative filtering data, we trained a codebook
for use as a vector quantizer. We randomly selected 1000
songs from the discard set, and from each selected song,
randomly sampled 1000 ∆MFCC vectors, for a total of
1 million codebook-training vectors. Each training vector
v was z-scored, so that the ith coordinate vi becomes

vi 7→
vi − µi
σi

, (9)

where (µi, σi) are the sample mean and standard deviation
of the ith coordinate in the codebook-training set. We ran
k-means with k = 5000 on the z-scored training vectors,
using the implementation provided by [11]. The result is
a set of 5000 codewords, each of which was subsequently
“un”-z-scored by

vi 7→ σivi + µi. (10)
5 For training artists, we assume self-similarity, so there are technically

11 relevant artists for each training artist.

With the codebook in hand, the ∆MFCC vectors for
each song in the training, validation, and test splits were
quantized by finding the closest (in Euclidean distance)
codeword. Each song was summarized by a histogram over
the 5000 codewords, corresponding to the frequency with
which a codeword was selected as a quantizer in that song.

Finally, we constructed a χ2-kernel over songs, so that
the similarity between two codeword histograms u and v
is calculated as 6

k(u, v) = exp
(
−χ2(u, v)

)
(11)

χ2(u, v) =
5000∑
i=1

(ui − vi)2

ui + vi
. (12)

(This kernel can itself be viewed as a soft vector quan-
tizer, this time operating at the song-level rather than the
feature-level.) Each song is represented by a vector in
R1842, where the ith dimension represents similarity to the
ith training song. We then compress these vectors by prin-
cipal components analysis to 35 dimensions, which capture
95% of the variance in the training set.

3.3.2 Auto-tags

We can alternatively represent a song’s acoustic informa-
tion by using descriptive semantics. By learning from ex-
ample songs that humans have labeled with tags, an “auto-
tagger” (e.g., [12,23]) can automatically rate the relevance
of these tags to new, unlabeled songs. The resulting “auto-
tags” offer a concise description of the song, and semantic
similarity between auto-tags has been shown to improve on
content-based similarity derived from acoustics alone [5].
We use the auto-tagger described in [23] to label each song
with a real-valued vector of 149 auto-tags: the ith dimen-
sion of this vector corresponds to the probability that the
ith tag applies to the song, given the observed ∆MFCCs.

3.3.3 Human tags

Our third feature describes songs with “human tags” mined
from the Music Genome Project by [22] that include de-
scriptors of a song’s genre, style, instrumentation, vocals
and lyrics. Each song is represented by a 1,053-dimensional
binary vector that is “weakly-labeled”, meaning that a “1”
implies that the tag is relevant but a “0” does not guarantee
that the tag does not apply to the song. We consider these
“human tags” to be “acoustically objective” as they have
been applied by musicological experts and refer only to
the acoustic content of the songs. They represent the ideal
output that a content-based auto-tagger might achieve.

4. EXPERIMENTS

The MLR algorithm requires that a few parameters be set
when training: not only the slack trade-off C, but also the
choice of ranking measure to optimize. The implemen-
tation described in [20] supports several standard ranking
measures: the area under the ROC curve (AUC), mean

6 For the summation in Equation 12, we adopt the convention
0/0 = 0.

Data source AUC MAP MRR
MFCC 0.630 0.057 0.249
Optimized MFCC 0.719 0.081 0.275
Auto-tags 0.726 0.090 0.330
Optimized auto-tags 0.776 0.116 0.327
Human tags 0.770 0.187 0.540
Optimized human tags 0.939 0.420 0.636

Table 2. Ranking performance of each data source
(MFCC, auto-tags, and human tags), before and after
learning with MLR.

reciprocal rank (MRR), mean average precision (MAP),
precision-at-k (P@k), and normalized discounted cumula-
tive gain (NDCG); see [8] for a brief summary of these
ranking measures. For P@k and NDCG, an additional
parameter k must be set, which defines how many songs
should be retrieved when evaluating the ranking.

For each data source described in Section 3, we trained
metrics with all five variants of MLR. We swept over C ∈
{10−2, 10−1, . . . , 1011}, and for the P@k and NDCG vari-
ants, we also swept over k ∈ {2, 4, 8, . . . , 256}. Perfor-
mance was evaluated on the validation set, and the best-
performing metric was then tested on the test set.

4.1 Embedding results

After learning W , we evaluate on the validation and test
sets by computing for each query song q, the ranked list
of training songs x ordered by increasing ‖q − x‖W . The
resulting rankings are scored, and scores are averaged over
all q to produce a single score for the learned metric. For
comparison purposes, we also evaluate rankings derived
from native metrics (i.e., without learning W). The native
metric for auto-tags is taken to be the Kullback-Leibler di-
vergence between auto-tag distributions. For MFCC and
human tags, we use standard Euclidean distance.

Table 4 displays some example playlists generated by
the native and optimized MFCC spaces. At a high level, the
learned metrics successfully de-noise the feature space to
generate more cohesive playlists. Table 2 lists ranking per-
formance for each data source, before and after optimiza-
tion. In all but one case (auto-tag MRR), performance im-
proves across all evaluation criteria. For each data source
(MFCC, auto-tags, and human tags), we observe dramatic
improvements in accuracy over the corresponding native
similarity metric.

Quantitatively, the purely acoustic model improves in
AUC score from 0.630 to 0.719. The optimized similarity
performs comparably to native auto-tag similarity, but can
be constructed entirely from passive data (as opposed to
the actively collected data necessary for building auto-tag
models). Similarly, optimizing auto-tags improves AUC
from 0.726 to 0.776, which is comparable to the native per-
formance of human tags. Finally, optimizing human tags
improves AUC substantially, from 0.770 to 0.939. This
indicates that even when annotations are hand-crafted by
experts, recommendation may still be greatly improved by
using an appropriate model of the tag vocabulary.

Top tags Bottom tags
1. LATIN 1044. TWO-STEP STYLE
2. A REGGAE FEEL 1045. UNUSUAL VOCAL SOUNDS
3. REGGAE 1046. UPBEAT LYRICS
4. CHRISTIAN 1047. CALL-AND-RESPONSE VOCALS
5. NEW-AGE 1048. ELECTRIC PIANOS
6. ROCK ON THE RANGE RADIO 1049. MODAL HARMONIES
7. WAKARUSA RADIO 1050. TONAL HARMONIES
8. SASQUATCH RADIO 1051. VOCAL COUNTERPOINT
9. CMJ MUSIC MARATHON 1052. VOCAL SAMPLES

10. REGGAE / CARIBBEAN 1053. WESTERN SWING

Table 3. The top and bottom 10 tags learned by MLR,
ordered by weight. 85 tags receive 0 weight.

4.2 Learning tag weights

Given the substantial improvement observed by optimiz-
ing human tags, one may wonder what conclusions can be
drawn from the learned metric. In particular, since W can
be interpreted as “translation matrix” or vocabulary model,
it is natural to ask which tags define the similarity space,
and which tags are redundant or non-informative.

Because W contains both positive and negative entries,
it is not immediately clear how to interpret a full matrix W
in terms of tags. However, placing further restrictions on
the form of W can ease interpretability (at the expense of
model flexibility). We repeated the “human tags” experi-
ment with a modification of Algorithm 1 that restricts W
to be diagonal and non-negative. In the restricted model,
the ith element of the diagonal Wii can be interpreted as a
weight for the ith tag. The diagonal metric achieves AUC
of 0.875 (compared to 0.776 native and 0.939 for a fullW).

Table 3 lists the top and bottom 10 tags, ordered by
weights Wii. Several interesting observations can be made
here: all of the top tags refer either to genre (e.g., LATIN,
REGGAE) or streaming radio identifiers (e.g., WAKARUSA,
CMJ). This corroborates previous studies which indicate
that grouping music by social cues, such as radio playlists
or blogs, can assist recommendation [4]. By contrast, the
bottom tags are primarily musicological terms (e.g., VO-
CAL COUNTERPOINT) which apparently convey little use-
ful information for recommendation.

This view of MLR as a supervised learning procedure
for vocabulary models suggests comparison to standard,
unsupervised techniques, such as TF-IDF with cosine sim-
ilarity. It turns out that for this data set, using TF-IDF
weighting results a decrease in AUC from 0.770 to 0.724!
From this, we can conclude that it is suboptimal to rely on
the natural statistics of tags to define similarity.

5. CONCLUSION

We have proposed a method for improving content-based
similarity by learning from a sample of collaborative filter-
ing data. The proposed method learns an optimal transfor-
mation of features to reproduce high-quality CF similarity,
and can be used to improve the quality of recommendation
in the long tail. If songs are described by semantic tags,
our method reveals which tags play the most important
role in defining an optimal similarity metric. By revealing
the most important tags for predicting CF similarity, our
method may also be useful for guiding the development of
discovery interfaces and automatic tagging algorithms.

Query song Native space playlist Optimized space playlist

M
FC

C

Chick Corea Elektric Band - Beneath the Mask

Katalyst - Break Up I Michael Brecker - Two Blocks From The Edge
Stevie Wonder - Superstition I Charlie Parker - Wee
James Brown - Soul Power Coleman Hawkins - There Is No Greater Love
Tina Turner - What’s Love Got To Do With It I Miles Davis - Walkin’
The Whispers - And The Beat Goes On Clifford Brown - Love Is A Many Splendored Thing

A
ut

o-
ta

gs
White Zombie - Electric Head (Pt. 2.) (Remix)

I Sepultura - Apes Of God I Sepultura - Apes Of God
Arctic Monkeys - A Certain Romance I Metallica - Nothing Else Matters (Live)
Secret Machines - Lightning Blue Eyes Secret Machines - Lightning Blue Eyes
Green Day - Longview (Live) The Warlocks - Gypsy Nightmare
Perry Farrell - Kinky Mastodon - Crystal Skull

H
um

an
ta

gs

Aaliyah - Miss You

I Ginuwine - In Those Jeans I Monica - Don’t Take It Personal
I Monica - Don’t Take It Personal I Ginuwine - In Those Jeans
I Ashanti - Foolish I Ashanti - Foolish
Foo Fighters - DOA I Ne-Yo - Go On Girl
Say Hi To Your Mom - Northwestern Girls Jodeci - Freak N You

Table 4. Example playlists in native and optimized MFCC, auto-tag, and human tag spaces. Playlists are generated by
finding the five nearest neighbors of the query; relevant results are indicated by I.

6. REFERENCES

[1] Netflix press release, 2009.
http://netflix.mediaroom.com/index.php?s=43&item=307.

[2] Apple itunes, 2010. http://www.apple.com/itunes.
[3] Jean-Julien Aucouturier and François Pachet. Music

similarity measures: What’s the use? In Inerna-
tional Symposium on Music Information Retrieval (IS-
MIR2002), pages 157–163, 2002.

[4] Claudio Baccigalupo, Justin Donaldson, and Enric
Plaza. Uncovering affinity of artists to multiple gen-
res from social behaviour data. In International Sym-
posium on Music Information Retrieval (ISMIR2008),
September 2008.

[5] Luke Barrington, Antoni Chan, Douglas Turnbull,
and Gert Lanckriet. Audio information retrieval us-
ing semantic similarity. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), 2007.

[6] Luke Barrington, Reid Oda, and Gert Lanckriet.
Smarter than genius? Human evaluation of music rec-
ommender systems. In Proceedings of the 10th Inter-
national Conference on Music Information Retrieval,
2009.

[7] O. Celma. Music Recommendation and Discovery in
the Long Tail. PhD thesis, Universitat Pompeu Fabra,
Barcelona, Spain, 2008.

[8] Soumen Chakrabarti, Rajiv Khanna, Uma Sawant,
and Chiru Bhattacharyya. Structured learning for non-
smooth ranking losses. In KDD ’08: Proceeding of
the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 88–96,
New York, NY, USA, 2008. ACM.

[9] D. Ellis, B. Whitman, A. Berenzweig, and
S. Lawrence. The quest for ground truth in musi-
cal artist similarity. In Proeedings of the International
Symposium on Music Information Retrieval (ISMIR),
pages 170–177, October 2002.

[10] L. Fei-Fei and P. Perona. A bayesian hierarchical
model for learning natural scene categories. In IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2005), volume 2, 2005.

[11] Peter Gehler. MPIKmeans, 2007.
http://mloss.org/software/view/48/.

[12] M. Hoffman, D. Blei, and P. Cook. Easy as CBA: A
simple probabilistic model for tagging music. In Pro-
ceedings of the 10th International Conference on Mu-

sic Information Retrieval, 2009.
[13] Thorsten Joachims. A support vector method for mul-

tivariate performance measures. In Proceedings of the
22nd international conference on Machine learning,
pages 377–384, New York, NY, USA, 2005. ACM.

[14] Thorsten Joachims, Thomas Finley, and Chun-
Nam John Yu. Cutting-plane training of structural
svms. Mach. Learn., 77(1):27–59, 2009.

[15] Joon Hee Kim, Brian Tomasik, and Douglas Turnbull.
Using artist similarity to propagate semantic informa-
tion. In Proceedings of the 10th International Confer-
ence on Music Information Retrieval, 2009.

[16] Last.FM, January 2009. http://www.last.fm/.
[17] B. Logan. Music recommendation from song sets. In

International Symposium on Music Information Re-
trieval (ISMIR2004), 2004.

[18] François Maillet, Douglas Eck, Guillaume Desjardins,
and Paul Lamere. Steerable playlist generation by
learning song similarity from radio station playlists. In
Proceedings of the 10th International Conference on
Music Information Retrieval, 2009.

[19] Brian McFee and Gert Lanckriet. Heterogeneous em-
beddding for subjective artist similarity. In Proceed-
ings of the 10th International Conference on Music In-
formation Retrieval, 2009.

[20] Brian McFee and Gert Lanckriet. Metric learning to
rank. In Proceedings of the 27th annual International
Conference on Machine Learning (ICML), 2010.

[21] M. Slaney, K. Weinberger, and W. White. Learning
a metric for music similarity. In International Sym-
posium on Music Information Retrieval (ISMIR2008),
pages 313–318, September 2008.

[22] D. Tingle, Y. Kim, and D. Turnbull. Exploring auto-
matic music annotation with “acoustically-objective”
tags. In IEEE International Conference on Multimedia
Information Retrieval (MIR), 2010.

[23] D. Turnbull, L. Barrington, D. Torres, and G. Lanck-
riet. Semantic annotation and retrieval of music and
sound effects. IEEE TASLP, 16(2):467–476, Feb. 2008.

[24] K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H.G.
Okuno. An efficient hybrid music recommender sys-
tem using an incrementally trainable probabilistic gen-
erative model. IEEE Transactions on Audio, Speech,
and Language Processing, 16(2):435–447, 2008.

