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ABSTRACT

This article describes objective measures of segment reg-
ularity for use in evaluating musical structure annotations.
The core idea derives from identifying simple ratio rela-
tionships between segment durations (e.g., 2:1 or 3:4), and
can be implemented in both musical time (beats) or ab-
solute time (seconds). Extensions are proposed to further
quantify regularity within labeled segment groups, across
hierarchical levels, and evaluate balance or uniformity of
segment durations. The efficacy of the proposed methods
is demonstrated through an empirical study of several stan-
dard datasets for music structure analysis.

The results indicate: 1) under reasonable assumptions
of tempo stability, regularity can be reliably measured in
absolute time, 2) most existing datasets exhibit regular-
ity, 3) regularity interacts meaningfully with segment la-
belling, 4) regularity and balance are distinct concepts, and
5) multi-level segmentations exhibit cross-level regularity.

1. INTRODUCTION

Automatic music structure analysis can be thought of as
being driven by four fundamental principles: homogene-
ity, novelty, repetition, and regularity. The first three prin-
ciples have been fruitfully exploited in algorithm design,
e.g., the design of self-similarity matrices as an interme-
diate representation for boundary detection and section la-
beling. Similarly, these principles have led to the design of
evaluation criteria which quantify the agreement between
two annotations under one or more principles (e.g., bound-
ary detection metrics quantify agreement in novelty). The
regularity principle, however, has proven to be somewhat
trickier to integrate into algorithm design and evaluation.
While a few methods have been proposed to promote or
enforce regularity among automatically generated segmen-
tations, there is at present no systematic method of quanti-
fying the regularity of a temporal segmentation.

This paper describes a family of quantitative metrics to
assess the regularity of temporal segmentations. The pro-
posed metrics include formulations for unlabeled, labeled,
and hierarchical segmentations, and do not depend on beat
or downbeat estimations. Using these metrics, we analyze
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the reference annotations provided in several commonly
used datasets for music structure analysis. The goal of this
work is not to propose new algorithms for structure analy-
sis, but rather to gain insights about how “regularity” man-
ifests in existing structural annotations.

2. BACKGROUND AND RELATED WORK

Within the music information retrieval field, there is a well-
established literature on music structure analysis, and mul-
tiple studies have proposed taxonomies of perceptual and
musical properties used to inform the design of algorithms
for the task [1–3]. In this work, we follow the most recent
survey by Nieto et al. [3], which extends the earlier taxon-
omy of Paulus et al. [2] to include four governing princi-
ples of music structure analysis: homogeneity (segments
tend toward self-similarity), novelty (segment boundaries
coincide with perceptible changes), repetition (segments
consist of and may be identified by repeating sequences),
and most relevant to the current study: regularity, which
broadly concerns the distribution of segment durations.

Regularity has been invoked in various forms by al-
gorithm developers, though it is relatively under-explored
compared to the other governing principles. Sargent et al.
proposed an explicit objective to penalize deviation from
expected segment durations (measured in beats) [4, 5].
While Sargent’s penalty is a monotonic function of differ-
ence from the expected duration, Marmoret et al. proposed
a penalty that promotes durations of specific multiples of
bar lengths, e.g., preferring segment durations to align with
specific integer multiples of bars (8, 4, or 2) [6].

Other authors have proposed implicit models of seg-
ment regularity. McFee and Ellis proposed a clustering-
based segmentation algorithm in which segments are pe-
nalized in proportion to their duration, and the influence of
this penalty was optimized over training data [7]. Maezawa
proposed a recurrent neural network model to learn the dis-
tribution of segment durations from training data [8]. In
both cases, the notion of regularity is data-driven and im-
plicit, rather than deriving from explicitly coded domain
knowledge. The end result is qualitatively similar, in that
the algorithms are incentivized to produce some segmenta-
tions over others according to the distribution of durations.

Outside of algorithm design, relatively little focus has
been placed on identifying or quantifying regularity in mu-
sic structure analysis. Most closely related is the work of
Smith and Goto, who characterized the distribution of seg-
ment durations in the SALAMI dataset [9,10]. Their study
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Figure 1. Examples of regular and irregular segmentations
determined by d1 (blue) and d2 (orange). The patterned
regions illustrate the largest unit which divides both d1 and
d2, and multiples of this unit are marked by dashed lines.

yielded several findings: most notably from the perspective
of regularity is the observation that the durations of adja-
cent segments tend to exhibit simple integer ratios. Smith
and Goto exploited this and related observations derived
from estimated segment duration to inform the selection of
segmentation algorithms in an ensemble method.

This work synthesizes and extends the above notions
of regularity. The core idea is a direct extension of the
“simple integer ratio” observation of Smith and Goto [9].
It generalizes and formalizes the definitions of regularity
proposed by Sargent [5] and Marmoret [6], while also sup-
porting analysis in absolute time rather than relying on po-
tentially inaccurate beat and downbeat estimation.

3. METHODS

Although regularity may seem like a straightforward con-
cept, most prior work stops short of providing a formal
definition. For example, Sargent et al. define regularity as
“segments of comparable size” or “conforming to a spe-
cific segment model” (i.e., close to an expected value), and
translate this high-level description into a penalty term that
scales by divergence from an expected duration. This in-
tuition captures situations where segments have uniform
durations (fig. 1, top row), but does not include situations
where one duration divides another (fig. 1, second row).

3.1 Temporal divisibility

The proposed notion of regularity derives from the ques-
tion: what do two segment durations have in common?
When two segments have equal duration—the most “regu-
lar” configuration possible—the answer is everything. The
same is true, in a sense, when one duration divides the
other: the longer duration consists of “regular” repetitions
of the shorter duration. More interesting cases arise when
the two durations are not integer multiplies of each other,
e.g., the pair (2, 3). In such cases, we can divide the seg-
ments into smaller pieces until a common unit is found that
fits evenly into both. The less division is needed to achieve
this, the more “regular” the segments appear.

This intuition can be formalized in terms of the greatest
common divisor (gcd): in the case above, gcd{2, 3} = 1. 1

Normalizing by the smaller of the two durations yields a

1 We will assume for now that durations are integer-valued; the real-
valued extension is described in section 3.2.

simple expression that formalizes the question above:

ρ(d1, d2) :=
gcd{d1, d2}
min{d1, d2}

. (1)

Regularity of two segments is thus defined as the largest
unit of relative time that divides both durations.

Because gcd and min are both associative operators,
eq. (1) would directly generalize to support more than two
segments under comparison. 2 However, both operators
are sensitive to single input elements: a prime number may
dominate the gcd calculation, while a small number would
dominate the min calculation. This could in turn lead to
an overly sensitive metric if applied naively to an entire
segmentation. Instead, we may aggregate over pairwise
comparisons between distinct segments:

R(S) :=
2

|S| · (|S| − 1)

∑
d1 6=d2∈S

ρ(d1, d2), (2)

where S denotes the set of segment durations. This ap-
proach is more robust and lends itself naturally to useful
extensions by restricting the pairs under comparison, as
demonstrated in sections 3.4 and 3.5.

3.2 Musical time and absolute time

In eq. (1), durations d1 and d2 are assumed to be integer-
valued so that gcd is well-defined. This is reasonable when
time is measured in musical time (beats), but it is not di-
rectly applicable to durations measured in absolute time
(seconds).

To resolve this, a two-stage pre-processing of durations
is implemented. First, as in most segmentation evaluation
metrics [11], durations are quantized with respect to a fixed
frame rate f (e.g., 10 Hz), so that d 7→ bd/fc. This pro-
duces integer-valued durations measured in frames, though
it is still possible that approximately commensurate dura-
tions would achieve a small ρ-value due to sampling and
rounding in the floor operation. To combat this, in the sec-
ond stage, ρ is computed for values d1+δ and d2+ε within
a tolerance window −w ≤ δ, ε ≤ w. As in boundary detec-
tion metrics [11], the default w corresponds to 0.5 seconds,
or equivalently, one beat at 120BPM. 3 The offsets δ, ε are
chosen to maximize the score as follows:

ρ̃(d1, d2) := max
−w≤δ,ε≤w

ρ

(⌊
d1 + δ

f

⌋
,

⌊
d2 + ε

f

⌋)
. (3)

This modification allows eq. (3) to gracefully support
tempo variations and small deviations of boundary posi-
tions, while still capturing the core principle of eq. (1).
R̃(S) is analogously defined as the average over all pair-
wise duration comparisons. The maximization in eq. (3) is
performed by computing ρ over a grid of (2w/f + 1) ×
(2w/f + 1) sample points, which under the default values
described below, is 11× 11 and efficient in practice.



Table 1. Empirical mean ρ̃ for uniformly sampled segment
durations d1 ≤ d2 in the range [4, 60] seconds, for different
frame rates f (Hz) and tolerance window w (seconds).

w = 0 w = 0.25 w = 0.5

f = 40 0.009 0.349 0.477
f = 20 0.016 0.343 0.477
f = 10 0.029 0.261 0.477
f = 2 0.111 0.111 0.427

3.3 Properties

Before going into extensions and applications, it is worth
pausing to take note of a few properties of ρ, ρ̃, and R.

Boundedness Since gcd{d1, d2} ≤ min{d1, d2}, eqs. (1)
and (3) are bounded at 1, with equality when d2 is an
integer multiple of d1 (or vice versa). The minimal value
1/min{d1, d2} is achieved by relatively prime (d1, d2).

Scale-invariance For any positive rational c such that c·d1
and c · d2 are integers, ρ(c · d1, c · d2) = ρ(d1, d2).

Attainable values ρ(d1, d2) = 1/N for some positive in-
teger N . This is because c = 1/ gcd{d1, d2}, which
satisfies the scale invariance property above, implies

ρ(d1, d2) = ρ(c · d1, c · d2) = 1/min{c · d1, c · d2}.

Expected value Table 1 reports the empirical mean ρ̃ for
uniformly sampled duration pairs over the range [4, 60]
seconds. For the proposed default tolerance of w = 0.5,
the mean ρ̃ ≈ 0.477 is stable for different frame rates f .

3.4 Extension 1: Section labels

Equation (2) averages over all unordered pairs of distinct
segments. It often occurs that not all segments are rele-
vant to include in this comparison: for example, introduc-
tory silences or crowd noise may exist outside of musi-
cal time and therefore not participate meaningfully in reg-
ularity. Similarly, sections with significant deviations in
tempo from the remainder of the recording may result in
low scores under eq. (3), and a case could be made that
these should be treated separately.

More generally, one may consider a notion of restricted
regularity that only compares segments with the same sec-
tion label (e.g., verse or chorus). Under suitable label-
ing conventions, this view encapsulates the examples listed
above, and provides a simple mechanism to exclude seg-
ments with sporadically occurring labels. This idea can be
implemented with a straightforward modification to eq. (2)
where a collection of distinct segment pairs P ⊂ S × S is
provided rather than the entire segmentation S:

RL(P ) =
1

|P |
∑

(d1,d2)∈P

ρ(d1, d2). (4)

2 The associative property of gcd and min also implies that the edge
case of a segmentation consisting of only one segment should produce a
score of 1. This convention is adopted here.

3 δ is constrained to d+ δ ≥ f so that eq. (3) is well-defined.

Label agreement is a simple way to generate the pair
set P , though the definition above supports other schemes,
e.g.automatic hierarchy expansion (for approximate agree-
ment) [12]. Relatedly, the temporal proximity observation
of Smith and Goto [9] can be implemented here by gener-
ating pairs of sequentially adjacent durations:

P = {(di, di+1) | 0 ≤ i < |S| − 1}.

3.5 Extension 2: Hierarchical regularity

Equation (2) can be modified to evaluate the regularity of
hierarchical segmentations. Note that eq. (2) operates on
pairs of durations, but it does not require that the segments
under comparison are disjoint in time or form a valid seg-
mentation. If H = (S0, S1, . . . ) denotes a multi-level seg-
mentation (with each Si denoting now the collection of in-
tervals at the ith segmentation level), a pair set P can be
generated by matching each segment at level i to its max-
imally overlapping segment at each level j < i. The sim-
plified case of a two-level hierarchy H = (S0, S1) yields

P =
{
(|s|, |t|) | t ∈ S1 ∧ s = argmaxs∈S0

|s ∩ t|
}
,

where |s| denotes the duration of interval s, and |s ∩ t| de-
notes the overlap duration between intervals s and t. Eval-
uating ρ on each such pair captures how evenly the hierar-
chy divides segments from one level to the next.

3.6 Extension 3: Balance

Equation (1) captures a form of regularity where durations
are related by simple ratios. This differs from previous no-
tions of regularity, which were designed to favor segments
of equal duration [5]. This notion can be recovered by re-
placing the min normalization in eq. (1) by max:

β(d1, d2) :=
gcd{d1, d2}
max{d1, d2}

. (5)

Equation (5) thus captures the balance of d1 and d2: a
score of 1 is only achieved when d1 = d2, a score of 1/2 is
achieved when they are related by a factor of 2, and so on.
In general, β(d1, d2) ≤ ρ(d1, d2), and it otherwise inherits
the boundedness, scale-invariance, and integer reciprocal
properties noted above. Repeating the calculations behind
table 1 for β̃ results in an expected value of 0.216 for uni-
formly random durations and w = 0.5.

As above, this also gives rise to an aggregate pairwise
score B(S), sampled versions β̃ and B̃, and labeled and
hierarchical variations.

4. EXPERIMENTS

The proposed metrics are evaluated on the reference anno-
tations provided by a variety of commonly used structure
analysis datasets spanning multiple genres:

Beatles (TUT) 174 Beatles songs using the TUT segmen-
tations [13] and Isophonics beat annotations [14].

HarmonixSet 912 popular songs with segment and beat
annotations [15].



Figure 2. Segment durations for each dataset.

Jazz Structure Dataset (JSD) 340 tracks [16]. For the
labeled metrics, the chorus and theme counter fields are
discarded from segment label strings, and segments la-
beled silence are treated as mutually distinct.

Jazz Audio-aligned Harmony (JAAH) 113 tracks with
labels derived from the parts annotations [17].

Real-world Computing (RWC) 211 tracks (100 popular,
61 classical, 50 jazz) [18]. For labeled metrics, segments
labeled as "nothing" are treated as mutually distinct, and
labels are simplified by discarding parenthetical varia-
tions (e.g., “chorus A (+1)” 7→ “chorus A”).

SALAMI 1359 tracks from the publicly available
dataset [10], consisting of 4486 annotations (2243 up-
per, 2243 lower). Sections labeled as "Z" or "silence"
are treated as mutually distinct for labeled metrics, and
variation markers are discarded (e.g., A′ 7→ A).

Figure 2 illustrates the distribution of segment durations
for each dataset.

The evaluation seeks to explore the following questions:

1. How do the absolute time metrics (ρ̃, β̃) differ from
the musical time metrics (ρ, β)?

2. Do structure annotations exhibit regularity and/or
balance? Does this vary with genre?

3. Are multi-level segmentations regular across levels?

In service of the first question, we compared scores de-
rived from absolute time (using the approach described
in section 3.2) to the simpler forms derived from integer-
valued durations measured in beats. This analysis is re-
stricted to the datasets with reference beat annotations:
Beatles, HarmonixSet, JAAH, and RWC. Each segment
boundary is mapped to its nearest beat, and segment du-
rations d are measured in beats between the start and end
boundaries. A preliminary study revealed sensitivities to
rounding error in beat position identification, which were
resolved by including a maximization over {d−1, d, d+1}.
The (Pearson) correlation was then computed between the
musical-time and absolute-time metrics for each dataset.

For the second question, unlabeled and labeled forms
of the absolute time metrics were computed. As a point of
comparison, metrics were also computed under restriction
to adjacent segments [9], denoted here as RS, BS, etc.

Table 2. Mean regularity and balance scores using musical
time, both unlabeled (R,B) and labeled (RL, BL).

R RL B BL

Beatles (TUT) 0.681 0.847 0.459 0.834
Harmonix 0.728 0.799 0.524 0.731
JAAH 0.741 0.878 0.488 0.869

RWC Classical 0.599 0.789 0.391 0.765
RWC Jazz 0.914 0.949 0.789 0.945
RWC Popular 0.820 0.958 0.587 0.945

Table 3. Mean regularity and balance scores using abso-
lute time, both unlabeled (R̃, B̃) and labeled (R̃L, B̃L).

R̃ R̃L B̃ B̃L

Beatles (TUT) 0.704 0.820 0.394 0.805
Harmonix 0.730 0.789 0.498 0.719
JSD 0.732 0.606 0.344 0.591
JAAH 0.646 0.793 0.411 0.784

RWC Classical 0.506 0.709 0.298 0.673
RWC Jazz 0.818 0.856 0.720 0.838
RWC Popular 0.791 0.941 0.560 0.925

SALAMI (upper) 0.776 0.719 0.373 0.619
SALAMI (lower) 0.875 0.889 0.684 0.840

For the third question, we restrict attention to the
SALAMI dataset, and evaluate hierarchical regularity and
balance using the paired upper- and lower-level annota-
tions for each track.

5. RESULTS

5.1 Musical time vs. absolute time

Table 2 reports the average value for the regularity and bal-
ance metrics on each of the datasets listed above for which
segment durations can be reliably measured in beats. As
should be expected, the labeled forms are generally sub-
stantially higher than the unlabeled forms. Each dataset
exhibits high labeled regularity (significantly above 0.5),
as well as high labeled balance, indicating that similarly la-
beled segments do consistently span equivalent durations.

Table 3 summarizes the absolute-time metrics across all
datasets, and Figure 3 illustrates the correlation between
these and the musical time data reported in table 2. The
correlations are generally high (above 0.6), with a few no-
table exceptions in the jazz and classical datasets. These
exceptions may be explained by the tempo distributions
of each dataset, illustrated in fig. 4. Recall that the ab-
solute time metric uses a tolerance window of 0.5 sec-
onds, equivalent to one beat at 120BPM. If a track is much
slower—e.g., RWC Classical with median tempo of 87.1,
or RWC Jazz with median tempo of 89.4—the maximiza-
tion in eq. (3) will not cover a full beat, so a larger window
may be warranted. However, note that if the tempo is sta-
ble, this becomes less of an issue because absolute- and
musical-time are approximately proportional, which is ex-
ploited by the scale-invariance property of ρ.
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Figure 3. Pearson correlation between musical- and
absolute-time metrics for each dataset.

Figure 4. Tempo derived from reference beat annotations.
Each point corresponds to the mean tempo for one record-
ing. 120BPM is marked in red as a reference point.

Figure 5 illustrates the distributions of tempo stability,
measured as the standard deviation of inter-beat-interval.
Datasets with high tempo stability tend to exhibit high cor-
relation in fig. 3 even when they contain many low-tempo
tracks (e.g., Beatles, Harmonix, and RWC Pop).

5.2 Unlabeled and labeled regularity

Figure 6 illustrates the relationship between labeled and
unlabeled regularity metrics. Consistent with the summary
in table 3, the unlabeled regularity scores are generally
quite dispersed, while the labeled scores skew higher, con-
firming that segments belonging to differently labeled sec-
tions may not conform to regular duration relationships.
Two exceptions to this observation are JSD and SALAMI
(upper). In both cases, labeled regularity decreases from
the unlabeled scores. These cases may be explained by
the use of short silence segments, which divide evenly into
most other segments, contributing many large values to the

Figure 5. Tempo stability for each dataset, as measured by
the standard deviation of local tempo derived from inter-
beat intervals in the reference annotations. Each point rep-
resents the standard deviation of tempo for one recording.

Beatles (TUT) Harmonix

JSD JAAH

RWC Classical
RWC Jazz
RWC Popular

SALAMI (upper)
SALAMI (lower)

Figure 6. Labeled vs. unlabeled regularity metrics for
each annotation in each dataset.

average in eq. (2). In the labeled regularity calculation,
each silence segment is treated as distinct, eliminating this
source of inflation. Segments of this nature are less preva-
lent in the other datasets (e.g., RWC or JAAH).

Table 4 summarizes the results of regularity and balance
when computed on adjacent segment pairs. While there are
clear regularity trends, confirming the prior work of Smith
and Goto, the effect is not generally as prevalent as the
label-agreement results reported in table 3.

5.3 Balance vs. Regularity

Figure 7 illustrates the distribution of the difference be-
tween labeled regularity and labeled balance in each

Table 4. Sequential regularity and balance metrics in both
musical time (RS, BS) and absolute time (R̃S, B̃S).

RS R̃S BS B̃S

Beatles (TUT) 0.666 0.651 0.399 0.398
Harmonix 0.720 0.696 0.500 0.483
JSD — 0.729 — 0.479
JAAH 0.786 0.699 0.563 0.495

RWC Classical 0.604 0.521 0.380 0.311
RWC Jazz 0.935 0.872 0.818 0.780
RWC Popular 0.839 0.806 0.592 0.562

SALAMI (upper) — 0.746 — 0.420
SALAMI (lower) — 0.882 — 0.753



Figure 7. The distributions of difference between labeled
regularity and balance: ∆ = R̃L − B̃L for each dataset.

Figure 8. Hierarchical scores on SALAMI.

dataset. The balance scores cannot exceed the regular-
ity scores—so the difference is non-negative—though each
dataset does exhibit very high correlation between reg-
ularity and balance: all correlation coefficients exceed
0.95. While some datasets generally tend to match bal-
ance and regularity (Beatles, JSD, JAAH, RWC Jazz and
Pop), others diverge substantially (Harmonix, RWC Clas-
sical, SALAMI). This demonstrates that regularity and bal-
ance are indeed distinct qualities of segmentation.

5.4 Hierarchical regularity

Figure 8 illustrates the distribution of hierarchical regular-
ity and balance scores on the SALAMI dataset. As ex-
pected, the balance scores tend to be low due to the shorter
duration of segments in the lower level annotations.

Interestingly, the regularity scores are generally quite
high, with a median value of 0.969. This can be inter-
preted broadly as confirming that upper-level segments are
comprised of whole repetitions of lower-level segment du-
rations. While this may be intuitively expected given the
annotation rules, it is not an obvious conclusion from the
single-level analyses in the previous section. Figure 6 il-
lustrates that lower-level segmentations tend to be highly
regular (R̃L ≈ 0.889) and highly balanced (B̃L ≈ 0.840),
while upper-level segmentations are slightly less regular
(R̃L ≈ 0.719) and often less balanced (B̃L ≈ 0.619).

6. DISCUSSION

From the findings above, we can draw some conclusions
about the role of regularity in music structure analysis.

First, because these analyses are conducted on refer-
ence annotations (not model outputs), the results reflect the
pbehavior of human annotators, and not algorithms. The
distribution plots in fig. 6 indicate that although the mean

regularity scores are generally high across datasets, there
is considerable variability across individual tracks. While
these results derive from the absolute time metrics, the high
correlation with the musical time metrics suggests that this
is generally not explained by tempo variation, and rather
reflects widespread and meaningful structural irregularity
in many datasets. This suggests that regularity, if taken as
a design principle in segmentation algorithms, should be
treated with some care to allow for irregular segmentations
when warranted by the track in question.

Second, the discrepancy between labeled and unlabeled
metrics can be quite large (Beatles, Harmonix, RWC Clas-
sical and Pop). This corresponds to non-trivial interactions
between the regularity and repetition principles (as related
to segment label agreement), which had not been identi-
fied in previous studies. Modeling and fruitfully exploiting
these interactions would be an interesting direction for fu-
ture work in structure analysis algorithms.

Third, some datasets exhibit significant discrepancies
between regularity and balance (Harmonix, SALAMI).
This demonstrates that segment durations in fact exhibit
more complex patterns than simple equivalence.

7. LIMITATIONS

The proposed methods are applicable to quantitative eval-
uation of segmentations, but they do exhibit some limita-
tions. First, the absolute time definition does appear to ex-
hibit sensitivity to tempo variation, in particular as it relates
to the choice of tolerance window. In situations where high
tempo variation may be expected, it may be preferable to
either apply the musical time formulation using estimated
beat positions (if they are reliable), or adapt the tolerance
window to fit the (estimated) tempo of the track.

Second, short segments may artificially inflate scores by
being easily divisible into long segments. This is partially
addressed by the labeled extension, as short segments tend
to be sporadic and unrelated to the majority of a track, e.g.,
a short silence segment at the beginning or end.

Finally, the proposed metrics do not easily lend them-
selves to differentiable formulations which may be in-
tegrated as learning objectives or penalties in current
gradient-based learning frameworks. While it may be pos-
sible to do so, e.g., by pre-computing a look-up table
of pairwise duration comparisons, other difficulties may
arise in adapting the ideas into practical segmentation al-
gorithms. Still, the proposed metrics may be more easily
integrated as post-processing steps, e.g., to identify mean-
ingful levels to include in a multi-level segmentation, or to
select among a collection of proposed segmentations gen-
erated by an ensemble of methods.
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