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ABSTRACT

Many evaluation metrics in Music Information Retrieval
(MIR) rely on uniform time sampling of phenomena that
unfold over time. While uniform sampling is suitable for
continuously varying concepts such as pitch or dynamic
envelope, it is suboptimal for inherently discrete or piece-
wise constant events, such as labeled segments. Current
Music Structure Analysis (MSA) metrics for label evalu-
ation are all implemented with time sampling, which can
be inexact and inefficient. In this work, we propose event-
based implementations of the three most widely used MSA
metrics. Our approach yields evaluations that are more
accurate, more computationally efficient, and more repro-
ducible, streamlining MSA research workflows.

1. INTRODUCTION

Efficient and accurate evaluation metrics are vital for
progress in MIR. Currently, many MIR metrics rely on
uniform time sampling. While suitable for continuously
varying phenomena like pitch, this approach introduces in-
accuracies and computational inefficiencies for discrete or
piecewise-constant annotations, such as chord estimation,
sound event detection, and other labeled intervals. More-
over, sampling introduces an arbitrary hyperparameter, the
frame size, that forces a trade-off between numerical accu-
racy and computational efficiency.

These issues are especially pronounced for Music
Structure Analysis (MSA) metrics, where labeled segmen-
tations are routinely evaluated using the Pairwise Frame
Clustering (PFC) score [1], the Normalized Cross Entropy
(NCE) score [2], the V-measure [3], and the L-measure [4].
Although the current implementations provided by the
standard MIR evaluation toolkit mir_eval [5] are widely
adopted and optimized, they still operate with a paradigm
based on uniform time sampling. Under this sampling-
based paradigm, metric computation can become pro-
hibitively expensive, often quadratic or worse in the num-
ber of frames, and numerically sensitive to the choice of
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frame size. This inefficiency hinders robust hyperparame-
ter tuning, slows iterative model development, and makes
large-scale studies impractical.

We introduce a new event-based paradigm for imple-
menting three common MSA metrics: the PFC, the V-
measure, and the L-measure. 1 Our event-based paradigm
offers a general strategy for evaluating time series annota-
tions by moving away from frame-based sampling. This
approach decouples numerical precision from computa-
tional cost, providing exact evaluations at speeds that are
orders of magnitude faster than frame-based methods. We
use MSA metrics to demonstrate how this paradigm in-
herently improves numerical stability and reproducibility.
This unlocks the potential for more scalable and robust re-
search not only for MSA but also for other common MIR
tasks such as chord estimation or sound event detection.

2. RELATED WORKS

The motivation behind our event-based metrics originates
from a long-standing reliance on sampling-based evalua-
tion within the MIR community. This practice, established
in the Music Information Retrieval Evaluation eXchange
(MIREX) campaigns, is now codified in widely adopted
toolkits such as mir_eval [5]. This reliance on a user-
defined frame rate requires prior knowledge of a task’s
characteristic timescale, forcing a domain-specific heuris-
tic into what should be an objective measurement.

Besides being a practical nuisance, the act of picking
an evaluation frame rate introduces vulnerability into the
evaluation itself, as reported performances are influenced
by arbitrary parameter choices. This scenario introduces
a methodological vulnerability, as reported performances
can become susceptible to the "Clever Hans" effect, where
a system’s apparent success stems from exploiting arbi-
trary choices or artifacts in the test design, rather than from
true understanding [6]. Our work focuses on removing this
layer of methodological variance.

Music segmentation is not the only task that can bene-
fit from an event-based formulation; related areas, such as
sound event detection (SED), have also faced challenges
associated with frame-based evaluations. The SED com-
munity’s standard evaluation toolkit, sed_eval [7], em-
ploys a relatively coarse default frame rate of 1 second, due
to the longer durations of audio recordings involved with

1 https://github.com/tomxi/frameless-eval



the task. This has led to recent work by Bilen et al. [8] and
Lostanlen and McFee [9] that explicitly proposes more ef-
ficient event-based metrics for SED.

Despite this clear trend towards event-based evalua-
tion in related fields, the core metrics for Music Struc-
ture Analysis within the field’s standard toolkit have re-
mained exclusively dependent on the sampling paradigm.
This paper addresses this gap by presenting event-based
implementations for the canonical MSA metrics, remov-
ing a long-standing inefficiency in MSA evaluation, and
enabling more robust, reproducible research.

3. SEGMENTATION METRICS

Different metrics have been proposed to evaluate flat and
hierarchical music segmentations. Flat segmentations are
often evaluated using metrics that are based on the concept
of clustering. 2 The pairwise frame clustering score (PFC)
[1] and the V-measure [3] both fall into this category. For
evaluating hierarchical segmentations, the L-measure [4]
has been used in many recent works on MSA [10–13].

All three metrics are implemented in mir_eval [5] by
sampling, with a default sampling rate of 10 Hz. Although
subtle, the frame size for these metrics also affects the eval-
uation results in unexpected ways. We now review these
three metrics and provide our event-based formulations.

3.1 Pairwise Frame Clustering

For a piece of music with time span T = [t0, t1], a seg-
mentation has a label mapping S(t) that maps time points
in T to a set of k unique labels γ = {y1, y2, . . . yk}:

S : T → γ (1)

When comparing an estimated segmentation Ŝ with a
reference S, the two do not need to share the same set of
labels. Instead, their comparison relies on internal label-
ing consistency, which identifies points labeled identically
within each segmentation.

This consistency is captured by the label agreement
map, defined as:

MS(u, v) := [S(u) = S(v)]
1
, (2)

where [·]1 is the indicator function that returns 1 if the con-
dition is true and 0 otherwise. It should be noted that al-
though MS(u, v) is piecewise constant, it is a continuous-
time function mapping MS : T 2 → {0, 1}.

We use MS to define the set of time pairs that meet,
which forms a set of significant time pairs that can be con-
sidered as information to be recalled:

A(S) := {(u, v) | MS(u, v) = 1} (3)

Figure 1 shows a simple example of a set of reference and
estimated segmentations S, Ŝ and their corresponding set
of meeting positions A(S), A(Ŝ) in its top two rows.

2 The boundary hit rate metric already uses an event-based formula-
tion, and therefore we focus our attention on the two metrics that focus
on labeling.
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Figure 1. Visualizing PFC as ratio of area. Top: reference
S and estimated Ŝ. Middle: meeting positions for each
segmentation: A(S) , A(Ŝ). Bottom: intersection A(S) ∩
A(Ŝ) highlighted in red.

Introduced by Levy and Sandler [1], the pairwise frame
clustering (PFC) metric evaluates segmentation agreement
by considering these meeting pairs. The PFC metric quan-
tifies the proportion of meeting pairs common to both seg-
ments relative to those unique to each. The time pairs
(u, v) that meet in both segmentations are colored red in
the bottom of Figure 1. PFC recall and precision are then
defined as the ratio of these areas.

PFCR =

∣∣∣A(S) ∩ A(Ŝ)
∣∣∣

|A(S)|
, PFCP =

∣∣∣A(S) ∩ A(Ŝ)
∣∣∣

|A(Ŝ)|
(4)

Here, |A(S)| represents the size of the set of meeting
positions under S. The size of this region can be computed
by integrating over the time pair space T 2.∣∣∣A(S) ∩ A(Ŝ)

∣∣∣ = ∫
T 2

MS(u, v) ·MŜ(u, v) d(u, v)

|A(S)| =
∫
T 2

MS(u, v) d(u, v)

Notice that since S(t) consists of discrete events and
is therefore piecewise constant, the integrals can be com-
puted as the sum of areas of rectangles, which have simple
closed-form solutions.

To achieve this efficiently, we define a common set of
intervals from the union of both segmentations’ bound-
aries. Within each resulting interval, the segment labels
remain jointly constant, allowing us to query each segmen-
tation’s label exactly once per interval, irrespective of in-



terval duration. This strategy leverages the piecewise con-
stant property of segmentations, ensuring exact computa-
tions with minimal sampling.

In terms of computational complexity, the PFC metric
requires sampling the label agreement map M over pairs,
which is quadratic in the number of frames (n2) for frame-
based approaches. For the continuous-time approach, the
complexity is (s + ŝ)2, where s and ŝ are the number of
segments for reference and estimation, respectively.

3.2 V-measure

While conceptually simple, PFC overlooks the issues of
over- and under-segmentation, which motivated the adop-
tion of Normalized Cross Entropy (NCE) [2], and the
closely related V-measure [3]. For comparing flat segmen-
tations’ labels, the V-measure is a modern metric that im-
proves upon the Normalized Conditional Entropy (NCE)
with proper normalization.

The entropy of a segmentation S : T → γ can be exam-
ined by randomly sampling along its duration. We denote
the sampled label as a random variable Y :

P[Y = y] = Pt∼T [S(t) = y],

H(S) = E[− logP[Y ]]

In particular, when segmentation is constant (that is,
S(t) = y for all t), H(S) = 0.

The conditional entropy H(Ŝ|S) measures the average
entropy of the estimated labels Ŝ for each given segment
label in the reference annotation S:

H(Ŝ|S) = E
y∼γ

[
H
(
Ŝ|S = y

)]
(5)

The conditional entropy estimates the amount of uncer-
tainty left in predicting the reference labels given the es-
timate segmentation. When the uncertainty for the refer-
ence label is low given the estimate, the estimate recalls
the labeling information presented in the reference.

The V-measure score reflects how much information
is shared between the two segmentations, relative to the
amount of information contained within each one. 3 :

VR = 1− H(S|Ŝ)
H(S)

, VP = 1− H(Ŝ|S)
H(Ŝ)

(6)

The probability and entropy are estimated by sampling
in the frame-based paradigm but can be calculated ex-
actly since S(t) consists of discrete labeled sections and
is piecewise constant.

P[Y = y] =
1

|T |

∫
T

[S(t) = y]1,dt

To calculate the V-measure, a contingency table is
used to represent the co-occurrence of segment labels be-
tween the reference and estimated segmentations. This ta-
ble allows for the straightforward calculation of joint and
marginal probabilities of label assignments.

3 NCE differs from V-measure only by normalizing relative to the uni-
form distribution instead of the marginals

Populating the k× k̂ contingency table has a time com-
plexity of O(n), as it requires a single pass through all n
frames. Once this k×k̂ table is created, the final V-measure
score is calculated by computing the marginal entropies
from the contingency table, a O(k × k̂) step, leading to an
overall complexity of O(k × k̂ + n). Similarly, the event-
based method results in a complexity of O(k× k̂+s+ ŝ).

3.3 L-measure

Unlike flat segmentation metrics, which evaluate whether
pairs of time points are assigned the same label, hierarchi-
cal metrics assess relationships across multiple levels of
granularity. In this setting, the goal is not just to determine
whether a pair of time points have matching label, but to
evaluate how well the hierarchical structure of an estimated
segmentation aligns with that of a reference.

The L-measure [4] addresses the task by explicitly con-
sidering differences in hierarchical depth as a ranking
problem. Rather than evaluating pairs of points, it uses a
triplet-based comparison that asks, for a given anchor time
t, if a second time point u is more closely related to t than
a third point v. If both the reference and estimated hierar-
chies agree on this ranking, then the structural information
contained at time t is recalled.

In its current implementation within mir_eval, L-
measure computes precision and recall densities separately
at each anchor time point, before aggregating these values
throughout the time domain. This is done to ensure that
each time point t contributes equally to the overall metric.
This calculation per time point is illustrated in Figure 2,
which can be interpreted as a local recall density before
aggregating it over the time domain.

We start by extending the notion of segments and its
label agreement mapping M(u, v) to hierarchies and its
counterparts. A hierarchy of depth d is a sequence of pro-
gressively finer flat segmentations and has a label mapping
H : T → (γ1, γ2, . . . , γd):

H(t) = (S1(t), S2(t), . . . , Sd(t)) .

The label agreement mapping for a hierarchy is defined
for each time pair as the deepest level at which they receive
the same label. For any pair of time points u, v ∈ T , the
depth of their shared label is defined as

MH(u, v) := max
{
d |Sd(u) = Sd(v)

}
. (7)

We plot two hierarchies and their label agreement maps in
the first two rows of Figure 2.

Using this depth mapping, we can define a triplet
(t, u, v) to be significant under hierarchy H if u is more
closely related to t than v is:

A(H; t) := {(t, u, v) ∈ T 3|MH(t, u) > MH(t, v)}. (8)

The third row in figure 2 shows MH(t, ·) for all times
in T , and the fourth row shows significant triplets
associated with query time t: where maroon marks
MH(t, u) > MH(t, v), i.e. A(H; t).
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Figure 2. Visualizing L-measure’s density at time t as ratio
of area. Row 1: two hierarchies H and Ĥ . Row 2: label
agreement maps MH and MĤ . Row 3: local relevance
MH(t, ·). Row 4: significant triplets A(H; t), A(Ĥ; t).
Row 5: matching significant triplets A(H; t) ∩ A(Ĥ; t)
highlighted in red.

The precision and recall scores are then defined for
each instant of time by counting the proportions of triplets
shared between the two sets of triplets A(H; t)∩A(Ĥ; t),
shown in red on the bottom row of Figure 2.

For an estimated hierarchy Ĥ and a reference H , the
density of L-measure at time t is defined as follows:

ρrecall(Ĥ|H; t) =

∣∣A(Ĥ; t) ∩ A(H; t)
∣∣∣∣A(H; t)

∣∣ ,

ρprecision(Ĥ|H; t) =

∣∣A(Ĥ; t) ∩ A(H; t)
∣∣∣∣A(Ĥ; t)

∣∣ . (9)

Notice how ρ is not defined when its denominator is
|A(H; t)| = 0. In the continuous-time formulation, this
would imply that MH(t, u) = MH(t, v) for all (u, v); or,
in other words, a flat segmentation with constant labeling.

With ρ defined, the overall L-measure recall is defined
as the average recall density over T :

Lrecall(Ĥ|H) =
1

|T |

∫
T

ρH(Ĥ; t) dt,

Lprecision(Ĥ|H) =
1

|T |

∫
T

ρĤ(H; t) dt. (10)

In practical terms, the task of identifying the set of
temporal triplets presents a computational complexity of
O(n3) for n frames when employing a naive method-
ology. This becomes particularly challenging for ex-
tended sequences. To improve efficiency in this process,
mir_eval implements an inversion counting algorithm
to assess ranking discrepancies between two lists, thereby
reducing the computational complexity to O(n2 log n)
time specifically in the context of the sampling case. Tak-
ing advantage of the same inversion counting algorithm,
the complexity of the continuous approach is O((s +
ŝ)2 log(s+ ŝ)).

Similarly to PFC, the L-measure also requires sam-
pling the hierarchical label agreement map MH , which is
quadratic in the number of segments s + ŝ or the number
of frames n for each of the d+ d̂ levels.

3.4 Computational Complexity

Table 1 describes the computational time complexity of the
three MSA metrics analyzed in this paper. We list the cur-
rent frame-based approaches and the new event-based ap-
proaches for each metric side by side. We will see that
when s < n in section 5, our event-based implementations
are significantly faster than the sampled versions, while
maintaining accuracy.

Metric Frame-Based Event-Based

Pairwise O(n2) O(s2)
V-measure O(k2 + n) O(k2 + s)
L-measure O(n2(d+ log n)) O(s2(d+ log s))

Table 1. Computational complexity of frame-based and
event-based versions of MSA metrics. k is the number of
unique labels, s is number of segments, n is number of
frames, d is the depth of the hierarchy.

4. EXPERIMENTS

To empirically evaluate our event-based implementation of
MSA metrics, we performed experiments using hierarchi-
cal structural annotations from the SALAMI dataset [14],
a widely used corpus containing hierarchical music struc-
ture annotations. We used 884 tracks from SALAMI, each
featuring two separate human-generated two-level hierar-
chies, allowing us to benchmark the proposed metrics us-
ing real annotations. We used the lower level of the hi-
erarchy to compare flat segmentation metrics. Segmen-
tations produced by Salamon et al.’s hierarchical MSA
method [15] on the SALAMI dataset were also considered,
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providing deeper hierarchies that match realistic computa-
tional scenarios typical in current MIR research. We will
refer to their approach as the Segment Fusion method.

4.1 Benchmarking Setup

We benchmarked our event-based implementations against
the frame-based versions available in mir_eval [5]. All
experiments were conducted on a 2021 MacBook Pro
equipped with an M1 Max chip, 32 GB RAM, and Python
3.9 using mir_eval version 0.8.2. Larger frame sizes in-
crease computation efficiency by reducing the number of
frames to process, facilitating rapid prototyping iterations.
However, these larger frames do not achieve the same level
of accuracy as those with finer frame sizes. We conducted
an assessment of both computational efficiency (in terms
of run-time) and accuracy (in terms of metric score consis-
tency). Our study evaluated the accuracy and runtime per-
formance of mir_eval’s implementation across five dis-
tinct frame sizes [0.1, 0.2, 0.5, 1.0, 2.0], measured in sec-
onds.

4.2 Scenario: Hyperparameter Tuning

To contextualize the computational overhead in a real-
world research scenario, we model our experiment on
the hyperparameter tuning process of the Segment Fusion
method [15]. Their optimization process involved evaluat-
ing 100 parameter combinations on a development set of
471 tracks. We report the cumulative run-time required to
evaluate a single hyperparameter combination across this
dataset using both our event-based and the standard frame-
based methods.

4.3 L-measure and Depth

We also assessed the L-measure’s runtime dependency on
hierarchical depth, a concern for evaluating very deep hi-
erarchies produced by segmentation algorithms. For this
experiment, we took the 12-layer hierarchies from the
Segment Fusion method and systematically reduced their
depth, one layer at a time. At each depth, we reported the
average runtime to compute the L-measure against a two-
layer reference hierarchy.

Frame Size Pairwise V-measure L-measure

0.1s -0.0009 0.0003 -0.0004
0.2s -0.0019 0.0010 -0.0009
0.5s -0.0047 0.0030 -0.0021
1.0s -0.0093 0.0059 -0.0035
2.0s -0.0187 0.0111 -0.0076

Table 2. Average metric deviation between frame-based
and event-based approach

5. RESULTS

5.1 Computational Efficiency

Figure 3 plots the run time of different framing schemes
versus the duration of the annotation in seconds. This
shows that our event-based implementation consistently
outperforms the frame-based method in terms of runtime.
Specifically, the run-time of our event-based implemen-
tation for L-measure remained close to 10 milliseconds
per computation, regardless of the duration of the track,
whereas frame-based computations’ run-time can some-
times exceeded 10 seconds and grows super-linearly with
duration. This substantial improvement in computational
efficiency highlights the potential for integrating these met-
rics into larger-scale analyses or iterative workflows, such
as hyperparameter tuning. Although not as pronounced,
the V-measure and PFC metrics also show a reasonable
speed up, especially with increasing track duration. This
is not surprising, as our implementation’s computational
complexity depends on the number of boundaries, as op-
posed to the number of frames.

5.2 Frame Size Sensitivity

Although coarser frame sizes make the original sampling-
based implementation faster to compute, they compromise
accuracy. Our experiments reveal considerable sensitivity
of the original frame-based metrics to the chosen frame
size.

Table 2 illustrates the average deviation of the frame-
based implementation for the three metrics when evalu-
ated with different frame sizes. Furthermore, Figure 4
presents a detailed analysis of the numerical discrepan-
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cies observed between our precise implementation and the
sampling-based methods, which are sensitive to the frame
size employed.

The results reveal systematic biases that vary by metric
and frame size. Both PFC and L-measure tend to under-
predict the true scores with increasing frame size, while the
V-measure consistently inflated. Notice that while the av-
erage biases are systematic, the individual errors are two-
sided; for any given frame size and metric, the deviations
can be either positive or negative relative to the precise
value, as shown in Figure 4

These opposing biases suggest that the reported rank-
ing of different systems could change based on the chosen
frame size, potentially undermining the reproducibility of
comparative evaluations.

5.3 Scenario: Hyperparameter Tuning

To assess the practical impact on iterative research work-
flows, we evaluated the computational cost following the
hyperparameter tuning process used to develop the Seg-
ment Fusion algorithm [15]. For one evaluation pass on
the 471-track development set, using our event-based im-
plementation took only 40 seconds. In stark contrast, the
frame-based implementation of mir_eval (with the rec-
ommended 0.1-second frame size) required approximately
90 minutes to perform the same evaluation. This would
mean that using our implementation during this develop-
ment pipeline could save hundreds of hours of compute
time, directly affecting the feasibility of certain research
activities that depend on heavy evaluation.

We also found that this overhead is disproportionately
affected by track duration; the ten longest tracks alone ac-
counted for 22 minutes of the frame-based evaluation time,
which provides an upper bound on how much efficiency
could be gained by parallelism. Our event-based formula-
tion avoids this dependency, offering not only significant
computational savings but also enhancing the practicality
of using large-scale datasets in modern MIR workflows.

5.4 L-measure and Depth

As noted in Section 3.4, the computational complexity
of both event-based and frame-based implementations de-
pends on hierarchies’ depth. We confirm this empirically
by showing average runtime for increasingly deeper esti-
mated hierarchies against the same annotations in Figure 5.
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Figure 5. Runtime comparison of frame-based and event-
based L-measure implementations as a function of hierar-
chy depth of Ĥ . The y-axis shows the metric runtime in
seconds (log scale), with shaded regions indicating 95%
confidence interval.

6. DISCUSSION

We introduced an event-based paradigm for Music Struc-
ture Analysis (MSA) evaluation metrics. This new
paradigm eliminates the arbitrary choice of frame size in-
herent in traditional frame-based approaches while drasti-
cally improving computational efficiency.

Our empirical evaluation using the SALAMI dataset
demonstrated the substantial benefits of our event-based
implementations. We showed significant gains in compu-
tational efficiency and, crucially, identified systematic bi-
ases present in frame-based metrics. These findings under-
score that even seemingly minor choices regarding frame
granularity can lead to non-trivial errors, potentially com-
promising evaluation integrity. While frame-based met-
rics can approach the accuracy of event-based counterparts
with sufficiently small frame sizes, this precision comes at
a considerable computational cost, severely limiting their
utility in large-scale or iterative research workflows.

Looking ahead, our event-based paradigm can be read-
ily extended to other evaluation metrics and broader MIR
tasks. Adopting such an approach broadly within MIR
evaluation frameworks will not only enhance accuracy and
reproducibility, but will also foster the sustainable growth
and scalability of future research efforts.
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