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ABSTRACT

Playlist generation is an important task in music informa-
tion retrieval. While previous work has treated a playlist
collection as an undifferentiated whole, we propose to build
playlist models which are tuned to specific categories or
dialects of playlists. Toward this end, we develop a general
class of flexible and scalable playlist models based upon
hypergraph random walks. To evaluate the proposed mod-
els, we present a large corpus of categorically annotated,
user-generated playlists. Experimental results indicate that
category-specific models can provide substantial improve-
ments in accuracy over global playlist models.

1. INTRODUCTION

Playlist generation, the automated construction of sequences
of songs, is a central component to online music delivery
services. Because users tend to consume music sequentially
in listening sessions, the quality of a playlist generation
algorithm can significantly impact user satisfaction.

Recently, it has been proposed that playlist generation
algorithms may be best viewed as probabilistic models of
song sequences [11]. This viewpoint, borrowed from the
statistical natural language processing literature, enables
the automatic evaluation and optimization of a model by
computing the likelihood of it generating examples of user-
generated playlists. For this method to work, the practi-
tioner must provide a large collection of example playlists,
both for model evaluation and parameter optimization.

Of course, numerous subtleties and difficulties arise
when working with user-generated playlist data. For ex-
ample, the data is often noisy, and the author’s intent may
be obscure. In extreme cases, users may compose playlists
by randomly selecting songs from their libraries. More
generally, different playlists may have different intended
uses (e.g., road trip or party mix), thematic elements (break
up or romantic), or simply contain songs only of specific
genres. While previous work treats the universe of user-
generated playlists as a single language, building effective
global models has proven to be difficult [11].

To better understand the structure of playlists, we advo-
cate a more subtle approach. Rather than viewing naturally
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occurring playlists as a single language, we propose to
model playlists as a collection of dialects, each of which
may exhibit its own particular structure. Toward this end,
we develop dialect-specific playlist models, and evaluate on
a large corpus of annotated, user-generated playlists.

The proposed approach raises several natural questions:

• Is it beneficial to individually model playlist dialects?
• Are some dialects easier to model than others?
• Which features are important for each dialect?

Answering these questions will hopefully provide valuable
insight into the underlying mechanics of playlist generation.

1.1 Our contributions

In this work, our contributions are two-fold. First, we de-
velop a flexible, scalable, and efficient class of generative
playlist models based upon hypergraph random walks. Sec-
ond, we present a new, large-scale, categorically annotated
corpus of user-generated playlist data.

2. HYPERGRAPH RANDOM WALKS

Over the last decade, several researchers have proposed
playlist generation algorithms based upon random walks [9,
11,12]. 1 Random walk playlist models consist of a weighted
graph G = (X , E, w), where the vertices X represent the
library of songs, and the edges E and weights w encode
pairwise affinities between songs. A playlist is then gener-
ated by following a random trajectory through the graph,
where transitions xt xt+1 are sampled according to the
weights on edges incident to xt.

Random walk models, while simple and efficient, carry
certain practical limitations. It is often unclear how to define
the weights, especially when multiple sources of pairwise
affinity are available. Moreover, relying on pairwise inter-
actions can severely limit the expressive power of these
models (if each song has few neighbors), or scalability and
precision (if each song has many neighbors).

To overcome these limitations, we propose a new class of
playlist algorithms which allow for more flexible affinities
between songs and sets of songs.

2.1 The user model

To motivate our playlist generation algorithm, we propose a
simple model of user behavior. Rather than selecting songs

1 There are many approaches beyond random walk models; see [5,
chapter 2] for a survey of recent work.



YEAR_1977

Jazz

AUDIO-5/16

Figure 1. An example random walk on a song hypergraph:
vertices represent songs, and edges are subsets of songs.
Each transition xt xt+1 must lie within an edge.

directly from the entire collection X , we assume that the
user first narrows her selection to a subset e ⊆ X (e.g., jazz
songs), from which a song x0 ∈ e is chosen uniformly at
random. For each subsequent transition xt xt+1, the user
selects a subset containing the current song xt, and then
selects xt+1 uniformly from that subset.

This user model is exactly characterized by a random
walk on a hypergraph. Hypergraphs generalize undirected
graphs by allowing an edge e ∈ E to be an arbitrary subset
of the vertices, rather than a pair (Figure 1). For example,
a hypergraph edge may be as general as jazz songs, or as
specific as funk songs from 1977. Edge weights can be
used to encode the importance of a subset: for example,
a model of jazz playlists would assign high weight to an
edges containing jazz songs.

This model has several practically beneficial properties.
First, it is efficient and scalable, in that the only information
necessary to describe a song is its membership in the edge
sets. Similarly, it naturally supports extension to new songs
without having to significantly alter the model parameters
(edge weights). Second, the model can easily integrate dis-
parate feature sources, such as audio descriptors, lyrics, tags,
etc, as long as they can be encoded as subsets. Moreover,
the model degrades gracefully if a song only has partial
representation (e.g., audio but no lyrics or tags). Finally,
the model is transparent, in that each transition can be ex-
plained to the user simply in terms of the underlying edge
taken between songs. As we will see in Section 3, these
edges often have natural semantic descriptions.

2.2 The playlist model

To formalize our model, let H = (X , E, w) denote a hy-
pergraph over vertices (songs) X , edges E ⊆ 2X , and
non-negative weights w ∈ R|E|+ . We assume that the song
library X and edge set E are given, and our goal is to op-
timize the edge weights w. We denote by xet := 1[xt ∈ e]
the indicator that the song xt is contained in the edge e.

Because the selection of the next song xt+1 depends only
on the previous song xt and edge weights w, the model is
a first-order Markov process. The likelihood of a playlist
s = (x0 x1 · · · xT ) thus factors into likelihood of
the initial song, and each subsequent transition:

P(x0 x1 · · · xT |w) = P(x0|w)
T−1∏
t=0

P(xt+1| xt, w).

Given the edge weights w, the distribution over the initial
song x0 can be characterized by marginalizing over edges:

P(x0| w) :=
∑
e∈E

P(x0| e)P(e| w) =
∑
e∈E

xet
|e|

we∑
f∈E wf

.

Similarly, the probability of a transition xt xt+1 is defined
by marginalizing over edges incident to xt:

P(xt+1| xt, w) :=
∑
e∈E

P(xt+1| e, xt)P(e| xt, w)

=
∑
e∈E

1[xt+1 6= xt] · xet+1

|e| − 1
· xetwe∑
f∈E

xft wf

.

Finally, to promote sparsity among the edge weights and
resolve scale-invariance in the model, we assume an IID
exponential prior on edge weights we with rate λ > 0:

P(we) := λ · exp (−λwe) · 1[we ∈ R+].

2.3 Learning the weights

Given a training sample of playlists S ⊂ X ∗, 2 we would
like to find the maximum a posteriori (MAP) estimate of w:

w ← argmax
w∈R|E|

+

logP(w| S)

= argmax
w∈R|E|

+

∑
s∈S

logP(s| w) +
∑
e∈E

logP(we). (1)

The MAP objective (1) is not concave, and it is generally
difficult to find a global optimum. Our implementation uses
the L-BFGS-B algorithm [2] to solve for w, and converges
quite rapidly to a stationary point. Training typically takes
a matter of seconds, even for the large playlist collections
and edge sets described in Section 3.

3. DATA COLLECTION

Previous work on playlist modeling used the Art of the
Mix 3 (AotM) collection of Ellis, et al. [4]. The existing
AotM dataset was collected in 2002, and consists of roughly
29K playlists over 218K songs, provided as lists of plain-
text song and artist names. In this work, we expand and
enrich this dataset into a new collection, which we denote
as AotM-2011. 4 This section describes our data collection,
pre-processing, and feature extraction methodology.

3.1 Playlists: Art of the Mix 2011

To expand the AotM playlist collection, we crawled the site
for all playlists, starting from the first indexed playlist (1998-
01-22) up to the most recent at the time of collection (2011-
06-17), resulting in 101343 unique playlists. Each playlist
contains not only track and artist names, but a timestamp
and categorical label (e.g., Road Trip or Reggae).

2 X ∗ denotes the Kleene star operation.
3 http://www.artofthemix.org
4 http://cosmal.ucsd.edu/cal/projects/aotm2011/.



To effectively model the playlist data, the plain-text song
and artist names must be resolved into a common names-
pace. Following previous work, we use the Million Song
Dataset (MSD) as the underlying database [1, 11]. Rather
than rely on the Echo Nest text-search API to resolve song
identifiers, we instead implemented a full-text index of
MSD song and artist names in Python with the Whoosh 5

library. This allowed both high throughput and fine-grained
control over accent-folding and spelling correction. Each
(artist, song) pair in the raw playlist data was used as a
query to the index, and resolved to the corresponding MSD
song identifier (if one was found). In total, 98359 songs
were matched to unique identifiers.

Because not every song in a raw playlist could be cor-
rectly resolved, each playlist was broken into contiguous
segments of two or more matched song identifiers. Fi-
nally, playlist segments were grouped according to category.
Table 1 lists each of the 25 most popular categories by size.

3.2 Edge features

To fully specify the playlist model, we must define the edges
of the hypergraph. Because edges can be arbitrary subsets
of songs, the model is able to seamlessly integrate disparate
feature modalities. We use the following collection of edge
features, which can be derived from MSD and its add-ons.

Audio To encode low-level acoustic similarity, we first
mapped each song i to a vector xi ∈ R222 using the
optimized vector quantized Echo Nest Timbre (ENT)
descriptors provided by [1, 11]. Audio descriptors
were clustered via online k-means, and cluster assign-
ments were used to produce k disjoint subsets. Re-
peating this for k ∈ {16, 64, 256} provided multiple
overlapping edges of varying degrees of granularity.
All 98K songs receive audio representations.

Collaborative filter To capture high-level similarities due
to user listening patterns, we construct edges from
the taste profile data used in the MSD Challenge [10].
We used the Bayesian Personalized Ranking (BPR)
algorithm [6, 13] to factor the users-by-songs (1M-
by-380K) feedback matrix into latent feature vectors
xi ∈ R32. The BPR regularization parameters were
set to λ1 = λ2 = 10−4. Edges were constructed
by cluster assignments following the procedure de-
scribed above for audio features. 62272 songs (63%)
coincide with the taste profile data.

Era The era in which songs are released can play an impor-
tant role in playlist composition [3, 8]. To model this,
we use the MSD meta-data to represent each song
by its year and half-overlapping decades. For exam-
ple, the song Parliament - Flash Light maps to edges
YEAR-1977, DECADE-1970 and DECADE-1975.
77884 songs (79%) were mapped to era descriptors.

Familiarity Previous studies have noted the importance of
song- or artist-familiarity when composing playlists [3,

5 http://packages.python.org/Whoosh/

11]. We used the artist familiarity data provided
with MSD, which maps each song to the range [0, 1]
(0 being unfamiliar, 1 being very familiar). Edges
were constructed by estimating the 25th and 75th
percentiles of familiarity, and mapping each song to
LOW, MEDIUM, or HIGH familiarity.

Lyrics Previous studies have shown the importance of
lyrics in playlist composition [8]. To compute lyrical
similarity, we applied online latent Dirichlet allo-
cation (LDA) [7] with k = 32 to the musiXmatch
lyrics database. 6 We then constructed three sets of
32 edges (one edge per topic): the first matches each
song to its most probable topic, the second matches
each song to its top three topics, and the third set to
its top five topics. 53351 songs (56%) were found in
the musiXmatch data.

Social tags Previous work incorporated semantic informa-
tion by using the total similarity between bag-of-tags
vectors of songs to determine similarity [11]. Here,
we take a more flexible approach, and model each
tag separately. Using the Last.fm 7 tags for MSD,
we match each song to its top-10 most frequent tags.
Each tag induces an edge (the songs assigned to that
tag). 8 80396 songs (82%) matched to tag edges.

Uniform shuffle Because the features described above can-
not model all possible transitions, we include a uniform
edge that contains all songs. A transition through the
uniform edge can be interpreted as a random restart
of the playlist. The uniform shuffle also provides a
standard baseline for comparison.

Feature conjunctions Some of the features described above
may be quite weak individually, but when combined,
become highly descriptive. For example, the tag
rock and era YEAR-1955 are both vague, but the
conjunction of these two descriptors — rock-&-
-YEAR-1955 — retains semantic interpretability,
and is much more precise. We therefore augment
the above collection of edges with all pair-wise inter-
sections of features. Note that this induces general
cross-modal feature conjunctions, such as Lyrics
topic #4-&-Audio cluster #17, resulting
in an extremely rich set of song descriptors.

4. EXPERIMENTS

To evaluate the proposed method, we randomly partitioned
each of the top-25 categories listed in Table 1 into ten 75/25
train/test splits. For each split, the train (test) sets are col-
lected across categories to form a global train (test) set
ALL, which is used to train a global model. After fitting a

6 http://labrosa.ee.columbia.edu/millionsong/
musixmatch

7 http://last.fm/
8 A similar tag-hypergraph model was proposed by Wang, et al. [14].



Category Playlists Segments Songs Category Playlists Segments Songs
Mixed 41798 101163 64766 Sleep 675 1487 2957
Theme 12813 31609 35862 Electronic Music 611 1131 2290
Rock-Pop 4935 13661 20364 Dance-House 526 1117 2375
Alternating DJ 4334 10493 18083 Rhythm and Blues 432 1109 2255
Indie 4528 10333 13678 Country 398 908 1756
Single Artist 3717 9044 17715 Cover 447 833 1384
Romantic 2523 6269 8873 Hardcore 268 633 1602
Road Trip 1846 4817 8935 Rock 215 565 1866
Punk 1167 3139 4936 Jazz 295 512 1089
Depression 1128 2625 4794 Folk 241 463 1137
Break Up 1031 2512 4692 Reggae 183 403 831
Narrative 964 2328 5475 Blues 165 373 892
Hip Hop 1070 1958 2505 Top-25 86310 209485 97411

Table 1. The distribution of the top 25 playlist categories in AotM-2011. Each playlist consists of one or more segments of
at least two contiguous MSD songs. 948 songs do not appear within the top 25 categories, but are included in the model.

Feature # Edges Feature # Edges
Audio 204 Collaborative filter 93
Era 56 Familiarity 3
Lyrics 82 Tags 201
Uniform 1 All features 640

Feature conjunctions 6390

Table 2. Summary of edges after pruning.

model to each training set, we compute the average (length-
normalized) log-likelihood of the test set S ′:

L(S ′| w) := 1

|S ′|
∑
s∈S′

1

|s|
logP(s| w).

For comparison purposes, we report performance in terms
of the relative gain over the uniform shuffle model wu (all
weight assigned to the uniform edge):

G(w) := 1− L(S
′| w)

L(S ′| wu)
.

To simplify the model and reduce over-fitting effects, we
pruned all edges containing fewer than 384 (98359/256)
songs. Similarly, we pruned redundant conjunction edges
that overlapped by more than 50% with either of their con-
stituent edges. Table 2 lists the number of edges retained
after pruning. On average, each song maps to 76.46±57.79
edges, with a maximum of 218. In all experiments, we fix
the prior parameter λ = 1.

4.1 Experiment 1: Does dialect matter?

In the first set of experiments, we compare the global model
to category-specific models. Figure 2 illustrates the relative
gain over uniform across all categories for four different
model configurations: tags, tags with pairwise conjunctions,
all features, and all features with conjunctions.

Several interesting trends can be observed from Figure 2.
First, in all but two cases — Narrative and Rock under the
all features with conjunctions model — category-specific
models perform at least as well as the global model, and
are often substantially better. As should be expected, the
effect is most pronounced for genre-specific categories that
naturally align with semantic tags (e.g., Hip Hop or Punk).

Note that the larger categories overlap more with ALL,
leaving less room for improvement over the global model.

Not surprisingly, the Mixed category appears to be difficult
to model with similarity-based features. The fact that it is
the single largest category (Table 1) may explain some of
the difficulties observed in previous studies when using a
global model [11]. Similarly, several other categories are
quite broad (Theme, Narrative, Rock), or may be inherently
difficult (Alternating DJ, Mixed).

Also of note are differences across model configurations.
Feature conjunctions generally provide a modest improve-
ment, both in the global and category-specific models. Due
to the large parameter space, some over-fitting effects can
be observed in the smallest categories (Folk, Reggae, Blues).
Interestingly, several categories benefit substantially from
the inclusion of all features compared to only tags (e.g., Hip
Hop, Punk, Jazz).

4.2 Experiment 2: Do transitions matter?

Given the flexibility of the model, it is natural to question
the importance of modeling playlist continuity: could a
model which ignores transition effects perform as well as
the random walk model? To test this, we split each playlist
s = (x0 x1 · · · xT ) into singletons s0 = (x0), · · ·,
sT = (xT ). With this modified corpus, the model treats
each song in a playlist as an independent draw from the
initial song distribution P(x0| w). Consequently, a model
trained on this corpus can fit global trends across playlists
within a category, but cannot enforce local continuity.

Figure 3 illustrates the relative gain for each category
under the stationary distribution with all features and con-
junctions. The results are qualitatively similar for alternate
model configurations. Compared to Figure 2 (bottom-right),
the results are substantially worse for most categories. In
many cases, the stationary model performs worse than the
uniform shuffle. This reflects the importance of transition
effects when modeling playlists, even when the corpus is
confined to genre-specific categories.

4.3 Experiment 3: Which features matter?

As illustrated in Figure 2, certain categories seem to benefit
substantially from the inclusion of non-tag features. To
investigate this effect, Figure 4 illustrates the aggregated
weight for each feature type under each of the category
models. Note that weight is aggregated across feature con-
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Figure 2. The median gain in log-likelihood over the uniform shuffle model, aggregated over ten random splits of the data.
Error bars span the 0.25–0.75 quantiles. Category-specific models generally outperform global models.
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Figure 3. Log-likelihood gain over uniform with the sta-
tionary model (all features and conjunctions). Ignoring
temporal structure significantly degrades performance.

junctions, so the weight for edge DECADE 1955-&-Rock
counts both for Era and Tag.

Tags receive the most weight (64% on average) across all
categories. Audio features appear to be most useful in Hip
Hop, Jazz and Blues (43%–44%, compared to 26% average).
This is not surprising, given that these styles feature rela-
tively distinctive instrumentation and production qualities.
Lyrical features receive the most weight in categories with
salient lyrical content (Folk, Cover, Narrative, Hardcore,
Break Up) and low weight in categories with little or highly
variable lyrical content (Electronic Music, Dance-House,
Jazz). Era and familiarity receive moderate weight (on aver-

age, 22% and 15% respectively), but the majority (20% and
14%) is due to conjunctions.

4.4 Example playlists

Table 3 illustrates samples drawn from category-specific
feature conjunction models. For generative purposes, the
uniform edge was removed after training. The generated
playlists demonstrate both consistency within a single playlist
and variety across playlists. Each transition in the playlist
is explained by the corresponding (incoming) edge, which
provides transparency to the user: for example, Cole Porter
- You’re the Top follows Django Rheinhardt - Brazil because
both songs belong to the conjunction edge AUDIO-3/16-
-&-jazz, and share both high- and low-level similarity.

5. CONCLUSION

We have demonstrated that playlist model performance can
be improved by treating specific categories of playlists in-
dividually. While the simple models proposed here work
well in some situations, they are far from complete, and
suggest many directions for future work. The first-order
Markov assumption is clearly a simplification, given that
users often create playlists with long-term interactions and
global thematic properties. Similarly, the uniform distribu-
tion over songs within an edge set allows for an efficient
and scalable implementation, but allowing non-uniform dis-
tributions could also be an avenue for future improvement.
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Figure 4. Distribution of learned edge weights for each playlist category. Weight is aggregated across feature conjunctions.

Category Edge Playlist

Hip Hop

AUDIO-149/256 Eminem - The Conspiracy (Freestyle)
AUDIO-149/256 Busta Rhymes - Bounce

DECADE-2000-&-rap Lil’ Kim (Featuring Sisqo) - How Many Licks?
old school A Tribe Called Quest - Butter

DECADE 1985-&-Hip-Hop Beastie Boys - Get It Together
AUDIO-12/16 Big Daddy Kane - Raw [Edit]

Electronic Music

AUDIO-11/16-&-downtempo Everything But The Girl - Blame
DECADE 1990-&-trip-hop Massive Attack - Spying Glass

AUDIO-11/16-&-electronica Björk - Hunter
DECADE 2000-&-AUDIO-23/64 Four Tet - First Thing

electronica-&-experimental Squarepusher - Port Rhombus
electronica-&-experimental The Chemical Brothers - Left Right

Rhythm and Blues

70s-&-soul Lyn Collins - Think
AUDIO-14/16-&-funk Isaac Hayes - No Name Bar
DECADE 1965-&-soul Michael Jackson - My Girl
AUDIO-6/16-&-soul The Platters - Red Sails In The Sunset

FAMILIARITY MED-&-60s The Impressions - People Get Ready
soul-&-oldies James & Bobby Purify - I’m Your Puppet

Jazz

AUDIO-14/16-&-jazz Peter Cincotti - St Louis Blues
jazz Tony Bennett - The Very Thought Of You

vocal jazz Louis Prima - Pennies From Heaven
jazz-&-instrumental Django Reinhardt - Brazil

AUDIO-3/16-&-jazz Cole Porter - You’re The Top
jazz Doris Day - My Blue Heaven

Table 3. Example playlists generated by various dialect models. Edge denotes the incoming edge to the corresponding song,
which for transitions, is shared by the previous song. Feature conjunctions are indicated by X-&-Y.
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