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Abstract—Recently, many object localization models have
shown that incorporating contextual cues can greatly improve ac-
curacy over using appearance features alone. Therefore, many of
these models have explored different types of contextual sources,
but only considering one level of contextual interaction at the time.
Thus, what context could truly contribute to object localization,
through integrating cues from all levels, simultaneously, remains
an open question. Moreover, the relative importance of the dif-
ferent contextual levels and appearance features across different
object classes remains to be explored. Here we introduce a novel
framework for multiple class object localization that incorporates
different levels of contextual interactions. We study contextual
interactions at the pixel, region and object level based upon
three different sources of context: semantic, boundary support,
and contextual neighborhoods. Our framework learns a single
similarity metric from multiple kernels, combining pixel and
region interactions with appearance features, and then applies a
conditional random field to incorporate object level interactions.
To effectively integrate different types of feature descriptions, we
extend the large margin nearest neighbor to a novel algorithm
that supports multiple kernels. We perform experiments on three
challenging image databases: Graz-02, MSRC and PASCAL VOC
2007. Experimental results show that our model outperforms
current state-of-the-art contextual frameworks and reveals indi-
vidual contributions for each contextual interaction level as well
as appearance features, indicating their relative importance for
object localization.

Index Terms—Contextual features, multiple kernel learning,
multiple object localization, object detection.

I. INTRODUCTION

L OCALIZING and identifying an object in an image is
a challenging task in the presence of occlusions, poor

quality, noise or background clutter. Therefore, to improve
recognition accuracy, many models for object recognition have
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supplemented appearance features (derived from the object
being recognized), with contextual information (derived from
surrounding regions or objects). Recent work in computer
vision has shown that the inclusion of contextual information
can improve recognition of objects in real world images as it
captures knowledge about the identity, location and scale of
objects. Various types of contextual cues have been exploited
to benefit object recognition tasks, including semantic [1]–[3],
spatial [2], [4]–[12], scale [6], [9], [13], [14] and geographic [1]
information. All of these models incorporate contextual infor-
mation at either a global or a local image level.

Global context considers statistics from the image as a whole,
i.e., the entire scene. This may include information about scene
identity, provided by image and scene classification techniques
before performing a more detailed analysis of the individual ob-
jects in the image. Several models [1], [12], [14] have success-
fully exploited global context to achieve better object detection
results compared to using only objects’ appearance information.

Local context considers information from neighboring areas
of the object, such as information from neighboring pixels, re-
gions, and objects. Since local context information is extracted
after decomposing a scene into many parts, its advantage over
global context is that it incorporates more precise, specific in-
formation from spatially localized image processing. Moreover,
even if large parts of the scene are occluded, which could sig-
nificantly affect global context features, it is still possible to ex-
tract relatively accurate local context features and carry out par-
tial, localized background matching. Therefore, in this work, we
will focus on local context, which many approaches for object
segmentation and localization [2], [4]–[9], [11], [15], [16] have
effectively incorporated into their recognition systems, greatly
improving their accuracy.

When considering local context, contextual interactions can
be grouped in three different types: pixel, region and object
interactions. Pixel interactions capture low-level feature inter-
actions between spatially adjacent objects. Region interactions
capture higher-level information from the region surrounding
an object. Finally, object interactions capture high-level infor-
mation from other objects in the scene, which may be sepa-
rated by large distances. Some of the previously mentioned ap-
proaches for object localization use local context from pixels
[11], [15], [16], while others incorporate local context from re-
gions [4]–[8], [17], or objects [2], [9]. Although most of these
models achieve good results, and some successfully combine
different sources of local context at a single level, they do not
combine information from different levels of local context, or
make explicit the contributions to localization accuracy due to
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Fig. 1. Examples of contextual local interactions. (a) Pixel interactions capture
information such as grass and tree pixels around the cow’s boundary. (b) Region
interactions are represented by relations between the face and the upper region
of the body. (c) Object relationships capture interactions between the objects
person and horse.

each individual level. Fig. 1 shows examples of different con-
textual interaction levels.

Previous work on image and scene classification has shown
that by providing a more complete representation of the scene,
the combination of multiple contextual interaction levels can
improve image classification accuracy [18], [19]. The demon-
strated benefits for image classification motivate our work to
unify contextual interactions and appearance information for the
problem of object localization. Previous methods for combining
different interaction levels for image classification are relatively
complex and computationally expensive. As a result, the relative
contributions due to each contextual level may be obscured by
the overall complexity of the system.

To provide an intuitive and interpretable method for inte-
grating multiple contextual interaction levels, we turn to mul-
tiple kernel learning (MKL). Multiple kernel learning methods
[20] have been succesfully applied in image classification [21],
[22] and object localization tasks to optimally combine different
types of appearance features [23], [24] and pixel interactions
[4]. These methods generally entail finding a weighted com-
bination of the given base kernels, where kernel weights are
applied uniformly across all points. The weighted combined
kernel is then used to produce classifiers, in either a hierarchical
or one-versus-all framework. Although learning separate kernel
combinations for each binary classification problem has been
shown to perform extremely well on these tasks [22]–[24], it
poses a great difficulty in scaling to large datasets, and the pre-
dictions from each classifier must be combined to yield a single
prediction. By contrast, learning a single metric would enable
the use of nearest neighbor classification, which naturally sup-
ports multiclass problems.

In this work, we present a novel framework for object local-
ization that efficiently and effectively combines different levels
of local contextual interactions. We develop a multiple kernel
learning algorithm (MKLMNN) to integrate appearance fea-
tures with pixel and region interaction data, resulting in a uni-

fied similarity metric which is optimized for nearest neighbor
classification. Our method differs from previous MKL methods
found in the computer vision literature, in that it can learn kernel
weights which vary across the training set. Thus, a kernel may
receive large weight only for the regions (or training points) for
which it is informative. The kernel methods used here capture
pixel- and region-level interactions, but to model object-level
interactions, we apply a conditional random field (CRF), which
produces the final label prediction for a test point. By using
the algorithmic tools developed here, we are able to study the
relative contribution of local contextual interactions for single-
and multiobject localization over different data sets and object
classes. To stimulate further research, source code will be made
publicly available as part of this paper, which originally ap-
peared as [25].

The paper is organized as follows. In Section II, we describe
in detail our multiclass multikernel approach, including a de-
tailed derivation of our MKLMNN algorithm. Section III intro-
duces the different levels of contextual interactions studied in
this work. We evaluate our algorithm for classification and lo-
calization tasks, and compare with related work in Section IV.
Finally, conclusions are presented in Section V.

II. MULTICLASS MULTIKERNEL APPROACH

In our model, each training image is partitioned into seg-
ments by using ground truth information. Each segment
corresponds to exactly one object of class , where is
the set of all object labels. These segments are collected for all
training images into the training set .

For each segment , we extract several types of fea-
tures, e.g., texture or color. Due to the specific nature of the
features used here, including appearance features and context
features from pixel interactions and region interactions (see
Sections III and IV), we do not expect linear models to ade-
quately capture the important relationships between data points.
We, therefore, represent each segment with a set of feature
maps , where the feature space is characterized
by a kernel function and kernel matrix , specifying the
inner product—or, more intuitively, the similarity—between
each pair of data points and :

(1)

As in support vector machines [26], the kernel formulation al-
lows us to capture nonlinear relations specific to each view of
the data. However, each kernel matrix encodes a different fea-
ture space, and it is not immediately obvious how to optimally
combine them to form a single space. In this section, we de-
velop an algorithm to learn a unified similarity metric over the
data, and a corresponding embedding function . This
embedding function is used to map the training set into the
learned space, where it is then used to predict labels for unseen
data with a -nearest neighbor (kNN) classifier.

Because at test time, ground-truth segmentations are not
available, the test image must be segmented automatically.
To provide more representative examples for nearest neighbor
prediction, we augment the training set , of ground-truth
segments, with automatically obtained segments . These
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Fig. 2. Our object localization framework. (1) A test image is partitioned into segments � , and (2) several different features � � � � � � � (blue) are extracted for
each segment. (3) Segments are mapped into a unified space by the optimized embedding ����, and a soft label prediction �� ���� � (red) is computed using kNN.
(4) Label predictions are spatially smoothed using a pairwise SVM, resulting in a new soft prediction � ���� �. (5) CRF estimates the final label for each segment
s’ in the test image, and (6) segments are combined into an object � if they overlap and receive the same final label.

additional segments, , are obtained by running the segmen-
tation algorithm [27] on the training images. This algorithm
runs multiple times on each image, where each run provides a
different number of image segments. Only those segments that
are completely contained within or overlap more than 50% with
the ground-truth object annotations are considered. These extra
segments are then mapped into the learned space by applying

, and are also used to make label predictions on unseen data.
To counteract erroneous over-segmentation of objects in test

images, we train an SVM classifier over pairs of the extra ex-
amples to predict whether two segments belong to the same
object. This is then used to spatially smooth the label predic-
tions in test images.

To incorporate context from object interactions within an
image, we train a CRF by using co-occurrence of objects within
training images.

At test time, object localization for test images proceeds in
six steps, depicted in Fig. 2. Specifically:

1) a test image is partitioned into stable segments ;
2) for each , we apply the learned embedding function

(Section II-B);
3) the -nearest neighbors of are used

to estimate a distribution over labels for the test segment
;

4) using the pairwise SVM, the label distribution of may
be spatially smoothed by incorporating information from
other segments in the test image, resulting in a new label
distribution (Section II-D);

5) the CRF uses object co-occurrence over the entire image
to predict the final labeling of each segment in the
test image (Section II-E);

6) finally, to produce object localizations from segment-level
predictions, we consider segments to belong to the same
object if they overlap at least 90% and receive the same
final label prediction.

Table I gives a brief summary of the notation used throughout
this article.

A. Large Margin Nearest Neighbor Using Kernels

Our classification algorithm is based upon -nearest neighbor
prediction, which naturally handles the multiclass setting. Be-
cause raw features (in the original feature space) may not

TABLE I
NOTATION USED THROUGHOUT THIS ARTICLE

adequately predict labels, we apply the large margin nearest
neighbor (LMNN) algorithm to optimally transform the fea-
tures for nearest neighbor prediction [28].

1) LMNN: At a high level, LMNN simply learns a linear
projection matrix to transform the data such that the resulting
representation is optimized for nearest-neighbor accuracy. If we
imagine segments , , and as being represented by vectors
in , then the goal is to learn a matrix such that

(2)

when and belong to the same class, and belongs to a
different class. Computationally, it is more convenient to op-
erate on squared Euclidean distances, which can be expressed
as follows:

Note that distance calculations involve quadratic functions of
the optimization variables , and distance constraints de-
scribed by (2) require differences of quadratic terms. Therefore,
formulating the optimization problem directly in terms of
would lead to a nonconvex problem with many local optima
[29]. However, solving for the positive semidefinite (PSD)
matrix gives rise to distance constraints that are
linear and, thus, convex in the optimization variables .
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Neighbors are then selected by using the learned Mahalanobis
distance metric

(3)

Formulating the problem in terms of introduces the con-
straint , leading to a semidefinite programming problem
[29], which is shown in Algorithm 1 [28]. In Algorithm 1,
and contain the neighbors of segment in the original fea-
ture space with similar or dissimilar labels respectively. For each

, rather than simply forcing neighboring segments with dis-
similar labels to be further away than those with similar labels

, as expressed by (2), the constraints in Algorithm 1 en-
force unit margins between the distances to ensure stability of
the learned metric. As in support vector machines, slack vari-
ables allow constraint violations with a hinge-loss penalty.

Algorithm 1 LMNN

The first term in the objective function minimizes the distance
from each to its similarly labeled neighbors . The second
term, weighted by a slack tradeoff parameter, , penalizes
violations of the margin constraints. is a PSD matrix which
characterizes the optimal feature transformation.

Once has been learned, a linear projection matrix can
be recovered by spectral decomposition, so that

(4)

Here, contains the eigenvectors of , and is a diagonal
matrix containing the eigenvalues.

2) Kernel LMNN (KLMNN): Algorithm 1 assumes that each
segment is represented by a vector in , and is limited to
linear transformations of these vector representations. To learn
nonlinear transformations, the algorithm can be kernelized [26],
[30] as follows.

First, a feature map , possibly nonlinear, is applied to a
segment . This can be viewed as projecting the segment into a
(high- or potentially infinite-dimensional) feature space. Then,
as in Algorithm 1, we learn an optimal linear projection from
that feature space to a low-dimensional Euclidean space in
which distances are optimized for nearest neighbor prediction

(5)

This projection , combined with the mapping , allows to learn
nonlinear transformations of the segment representation . For-
mulating an optimization problem in terms of in the high-di-
mensional space could lead to over-fitting. If we introduce a reg-

ularization term in the objective function to
limit the complexity of the learned , we may then apply the
representer theorem [31], [32]. It follows that, at the optimum,

takes the form

(6)

where is a matrix where the column is . Intuitively,
this expresses that the rows of any optimal must lie in the span
of the training data in the feature space.

This fact can be exploited to rewrite distance calculations in
terms of and , the kernel matrix corresponding to
the feature map

(7)

where is ’s column in . Similarly, we can
rewrite the regularization term

(8)

which allows to formulate the problem entirely in terms of
and without explicit reference to the feature map . Defining

, we can substitute into (7) and (8), and solve
the KLMNN problem in terms of . The KLMNN is listed as
Algorithm 2.

Algorithm 2 KLMNN

In summary, compared to Algorithm 1, we represent each
segment by its corresponding column in the kernel matrix

—essentially using similarity to the training set as fea-
tures—and introduce a regularization term , bal-
anced by the parameter to the objective function. The
embedding function then takes the form

(9)

where is recovered from by spectral decomposition (4).
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This embedding function generalizes to an unseen segment
by first applying the kernel function

at and each in the training set, and then applying the linear
transformation to the vector , where de-
notes vertical concatenation.

B. Multiple Kernel LMNN

To effectively integrate different types of feature descriptions,
e.g., appearance features and context from pixel and local inter-
actions—we extend the LMNN algorithm to a novel algorithm
that supports multiple kernels ( with feature
maps ).

Previous work approaches multiple kernel learning by
finding a weighted combination of kernels ,
where is the learned weight for [20]. While this
approach has worked for support vector machines, adapting it
directly to work with (K)LMNN, i.e., calculating distances by

(10)

would lead to a nonconvex optimization problem with many
local optima.

Instead, we take a different approach, and following [33],
we learn a set of linear projections , each cor-
responding to a kernel’s feature space. In this view, the linear
projection is tuned specifically to the geometry of the space
defined by the feature map . By representing the embedding
of a point as the concatenation of projections from each feature
space, we obtain the multiple-kernel embedding function

(11)

By linearity, the inner product between the embeddings of two
points , can be expressed as

(12)

Accordingly, distances between embedded points take the form

(13)

Following the argument of the previous section, we introduce
a regularization term for each kernel: . Now, by in-
dependently applying the representer theorem to each , it fol-
lows that the optimum lies in the span of the training data (within
the feature space):

(14)

Finally, by plugging (14) into (13) and following the logic of
(7), it follows that distances between embedded points can be
decomposed to the sum:

(15)

Similarly, the regularization terms can be collected and ex-

pressed as (see (8)). As in KLMNN
(Algorithm 2), the projection matrices appear only in the form

of inner products , so we can equivalently express the

constraints in terms of

(16)

and, similarly, the regularization term as .
This allows to carry out the optimization in terms of the
kernel-specific metrics .

We refer to the algorithm that emerges from this formulation
as MKLMNN, and the optimization is listed as Algorithm 3.
Like Algorithm 2, the optimization problem is still a semidef-
inite program (and, hence, convex), but now there are PSD
matrices to learn. The optimization is solved by gradient de-
scent on , where each is projected onto the set of PSD
matrices after each gradient step (see Appendix A).

Algorithm 3 MKLMNN

Fig. 3 illustrates the differences between LMNN, KLMMN,
and our framework for MKLMNN. The formulation of multiple
kernel learning via concatenated projections of feature spaces
results in a more flexible model than previous methods, and al-
lows the algorithm to automatically adapt to the case where the
discriminative power of a kernel varies over the data set.

Although the optimization problem is convex and can be
solved in polynomial time, maintaining the constraints
requires a spectral decomposition and projection onto the cone
of positive semidefinite matrices after each gradient step. To
simplify the process, we add a constraint which restricts
to be diagonal. This added constraint reduces the semidefinite
program (Algorithm 3) to a (more efficient) linear program,
and the diagonals of can be interpreted as weightings of
in each feature space. Moreover, diagonally constraining
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Fig. 3. Diagrams depicting the differences between LMNN, KLMMN, and our framework for MKLMNN.

can be interpreted as a sparse approximation to the full set of
PSD matrices, and is equivalent to optimizing over the set

In this view, each dimension of the learned embedding
is computed by a single kernel evaluation and scaling by the
corresponding learned weight. For diagonal matrices, enforcing
positive semidefiniteness can be accomplished by thresholding:

. This operation is much more computa-
tionally efficient than the PSD projection for full matrices,
and the diagonal formulation still yields good results in practice.

As is usually the case for kernel-based learning algorithms,
the complexity of Algorithm 3 (i.e., the dimensionality of )
scales with the number of training points. To cope with high-
dimensionality, one route is to compress each kernel matrix K,
either by row-sampling or principal components analysis. Our
formulation remains convex under both of these modifications,
which are equivalent to learning a projection (as opposed
to in (9)), where is a -by- sampling or PCA matrix.
This would effectively reduce the number of parameters to learn
and the dimensionality of the learned space, leading to a more
efficient optimization.

C. Soft Label Prediction

After mapping a test segment into the learned space, a prob-
ability distribution over the labels is computed by using its
nearest neighbors , weighted according to distance
from

(17)

where is the label of segment .

D. Spatial Smoothing by Segment Merging

Due to the automatic segmentation, objects may be repre-
sented by multiple segments at test time, where each segment
might contain only partial information from the object, resulting

in less reliable label information . To counteract this ef-
fect, we smooth a segment’s label distribution by incor-
porating information from segments which are likely to come
from the same object, resulting in an updated label distribution

.
Using the extra segments automatically extracted from

the training images, we train an SVM classifier on pairs of seg-
ments to predict whether two segments belong to the same ob-
ject. Based upon the ground truth object annotations for the
training set, we know when to label a pair of training segments
as coming from the same object. A training set is constructed
as follows. Going through all training images, all segment pairs
that come from the same (ground truth) object are collected in
a set of positive training examples. An equal number of nega-
tive training examples is obtained by randomly selecting pairs of
segments coming from a different object, in each of the training
images. Based upon this training data set of segment pairs, taken
from all training images, one SVM is trained.

The SVM is trained on features extracted from pairs of seg-
ments, i.e., given two segments and we compute:

Note that soft label predictions are not included as features,
so the SVM provides an independent assessment to smooth
the label distributions. At test time, we construct an undirected
graph where each vertex is a segment of the test image, and
edges are added between pairs that the classifier predicts to
come from the same object. For each connected component of
the graph, we merge the segments corresponding to its vertices,
resulting in a new object segment . We then extract features
for the merged object segment , apply the embedding func-
tion , and obtain a label distribution by (17). The
smoothed label distribution for a segment is then obtained
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as the geometric mean of the segment’s distribution and its
corresponding object’s distribution

(18)

Note that distributions remain unchanged for any segments
which are not merged (i.e., when ).

E. Contextual CRF

Unlike pixel and region interactions, which can be described
by lower-level features, object interactions require a high-level
description of the segment, e.g., its label, or a distribution
over possible labels. Because this information is not available
until after soft label predictions are known, object interactions
cannot be encoded in a base kernel. Therefore, information
derived from high-level object interactions is incorporated by
introducing a CRF after the soft label predictions
have been computed. CRFs are better suited for incorporating
contextual cues than other types of graphical models [34]. First,
object co-occurrences encode undirected information. This
suggests undirected graphical models, like CRFs or Markov
random fields (MRFs). Second, by modeling the conditional
distribution, CRFs can directly incorporate contextual relation-
ships, as soft constraints between random variables (as opposed
to MRFs, which model the joint distribution). This approach
has been previously demonstrated to be effective for object
localization [2], [3].

Given soft label predictions for all segments in an
image , the CRF models the distribution of final label assign-
ments for all segments as follows:

(19)

where , is the partition function and is
given by

(20)

The potential function captures long-distance dependencies
between objects in images, and is learned from object co-oc-
currences in training images through maximum likelihood
estimation. As it is intractable to maximize the co-occurrence
likelihood directly, we approximate the partition function using
Monte Carlo integration [35], and apply gradient descent to
find that approximately optimizes the data likelihood.

After obtaining soft label predictions for all segments in a
test image, the final label vector is determined by maximizing
(19) over all possible label assignments. The maximization can
be carried out efficiently by using importance sampling, where
each segment is a node in the CRF.

Fig. 4. Local contextual interactions in our model. Pixel interactions are cap-
tured by the surrounding area of the bird. Region interactions are captured by
expanding the window to include surrounding objects, such as water and road.
Object interactions are captured by the co-occurrence of other objects in the
scene.

III. CONTEXTUAL INTERACTIONS

In this section, we describe the features we use to characterize
each level of contextual interaction.

A. Pixel-Level Interactions

By capturing low-level feature interactions between an object
and surrounding pixels, pixel-level interactions implicitly incor-
porate background contextual information, as well as informa-
tion about object boundaries. To model pixel-level interactions,
we propose a new type of contextual source, which we call
boundary support. Boundary support computes the surrounding
statistics of an object within an image by considering individual
pixel values of a surrounding region of the object. This is shown
in Fig. 4.

In our model, boundary support is encoded by computing a
histogram over the L*A*B* color values in the region immedi-
ately surrounding an object’s boundary. We compute the -dis-
tance between boundary support histograms

(21)

and define the pixel interaction kernel as

(22)

where is a bandwidth parameter.

B. Region-Level Interactions

Region-level interactions have been extensively investigated
in the area of context-based object localization. By using large
windows around an object, known as contextual neighborhoods
[15], regions encode probable geometrical configurations, and
capture information from neighboring (parts of) objects (as
shown in Fig. 4). Our contextual neighborhood is computed
by dilating the bounding box around the object using a disk of
diameter

(23)
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where , , and are the widths and heights of the
image and bounding box respectively. We model region inter-
actions by computing the gist [14] of a contextual neighbor-
hood, . Hence, our region interactions are represented by the

-kernel

(24)

C. Object-Level Interactions

To train the object interaction CRF, we derive semantic
context from the co-occurrence of objects within each training
image by constructing a co-ocurrence matrix . An entry

counts the times an object with label appears in a
training image that contains an object with label . Diagonal
entries correspond to the frequency of the object in the training
set. Next, the between-class potential is learned by
approximately optimizing the data likelihood, using gradient
descent, as explained in Section II-E.

IV. EXPERIMENTS

To evaluate the localization accuracy of the proposed system
and study the relative importance of each contextual interaction
level, we perform experiments on the Graz-02 [36], MSRC [37]
and PASCAL 2007 [38] databases.

Four different appearance features were computed: SIFT
[39], Self-similarity (SSIM) [40], L*A*B* histogram and
pyramid of histogram of oriented gradients (PHOG) [41]. SIFT
descriptors were computed at random locations and quantized
in a vocabulary of 5000 words. SSIM descriptors were com-
puted at the same locations as SIFT, and also quantized in a
vocabulary of 5000 words. PHOG descriptors were computed
as in Bosch et al. [41], but we consider only a 360 orienta-
tion (608-dimensional descriptor). L*A*B* histograms were
computed and concatenated into a 48-dimensional histogram.
Finally, each type of feature is represented by a separate

-kernel.
As explained in Section III, region- and pixel-interaction ker-

nels are computed using GIST (1008-dimensional descriptor)
and L*A*B* color (48-dimensional histogram) features, respec-
tively. Boundary support is computed between 0 and 20 pixels
away from a segment’s boundary.

A. Analyzing MKLMNN for Single-Object Localization

In order to analyze the contribution of the MKLMNN compo-
nent of our framework, we perform experiments on Graz-02, a
single-object detection database. Graz-02 presents one of three
object classes—bikes, cars, and people—in each image (usually
with only one object instance per image), extreme variability in
pose, scale and lighting. Following the experimental setup of
[36], the ground truth object segments of the first 150 odd-num-
bered images of each class are used for training. The first 150
even-numbered images of each class are added to the test set.
Since, at test time, some segments will represent background
and no object, the discriminative power of MKLMNN is en-
sured by augmenting the training set with the class background.
More specifically, 150 background segments are obtained from

a random sample of the training images, confined to regions
where no object is present.

As there is only one class present in each image, there are no
object co-ocurrences from which to learn object interactions,
and we, therefore, omit the CRF step in this experiment. For
similar reasons, no SVM smoothing is being performed, making
the MKLMNN algorithm the focus of this evaluation. Test set
performance is measured by segment classification and single-
object localization accuracy.

1) Segment Classification: After labeling each segment in
a test image with the most probable class label from ,
the classification accuracy is evaluated by considering as cor-
rectly classified if it overlaps more than 90% with the ground
truth object while predicting the correct label. Table II(a) reports
classification results achieved for each object class by com-
bining appearance, pixel and region interactions. For compar-
ison purposes, we also list accuracy achieved by an unweighted
kernel combination. We define the average kernel function as
the unweighted sum of all base kernel functions, from which we
construct the average kernel matrix

(25)

Results show that for each object class, MKLMNN achieves sig-
nificantly higher accuracy than the unweighted average kernel.
While classification accuracy is high for all object classes, we
observe slightly lower performance for the object class people.
This class presents greater variability in scale than other classes,
resulting in more erroneous over-segmentations at test time. For
example, heads tend to be segmented as part of the background.
Table II(b) shows the mean classification accuracy achieved by
MKLMNN with different combinations of base kernels. Results
show that combining appearance with only one level of context
( or ) outperforms using context
or appearance alone (App). Furthermore, combining appearance
features with both types of local contextual features results in
the best performance .

Fig. 5 visualizes the learned space when optimally combining
appearance, pixel and region interactions. Note that images are
surrounded by neighbors that depict the same object from a sim-
ilar viewpoint.

Learning diagonally constrained rather than full , as de-
scribed in Section II-B, affects the embedding and, thus, the
classification accuracy. To quantify the effect on accuracy of
this simplifying assumption, we perform a small experiment to
compare full and diagonally constrained when learned with
the appearance kernels (SIFT, SSIM, and PHOG). Classification
accuracy is shown in Table III.

When constraining to be a diagonal matrix, the optimiza-
tion problem becomes linear and we, therefore, gain substantial
efficiency in computation and obtain a sparse solution. How-
ever, we also lose a small percentage of classification accuracy
when comparing with the results obtained with the full matrix.
In this work, we choose to trade accuracy for efficiency, so we
constrain to be diagonal in all subsequent experiments.

2) Object Detection: Localization accuracy is obtained
by first merging segments in test images that overlap by at
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TABLE II
SEGMENT CLASSIFICATION RESULTS FOR GRAZ-02. APPEARANCE (APP),

PIXEL (PI) AND REGION (RI) INTERACTIONS ARE COMBINED FOR SEGMENT

CLASSIFICATION. (A) CLASSIFICATION ACCURACY PER CLASS FOR THE

UNWEIGHTED SUM OF KERNELS (AVERAGE KERNEL) VERSUS LEARNING THE

OPTIMAL EMBEDDING BY COMBINING ALL KERNELS ���� � �� � ���
WITH MKLMNN. (B) AVERAGE CLASSIFICATION ACCURACY FOR

DIFFERENT KERNEL COMBINATIONS WITH MKLMNN

Fig. 5. 2-D projection of the optimal embedding for the Graz-02 training set.
We excluded background segments and subsample segments from object cate-
gories in order to have a better view of them.

TABLE III
COMPARISON IN CLASSIFICATION ACCURACY FOR LEARNING FULL,

RESPECTIVELY DIAGONAL�

least 90% and receive the same final label prediction, and then
following the well-known evaluation procedure of [38] on the
merged segments. This procedure accounts for label accuracy
and overlap with the ground truth object for the (merged) seg-
ments in test images. Table IV(a) shows localization accuracy
results for each object class. Combining all local contextual
interactions with appearance features results in the best lo-
calization accuracy. Although localization and classification

TABLE IV
LOCALIZATION RESULTS FOR GRAZ-02. (A) APPEARANCE (APP), PIXEL

(PI) AND REGION (RI) INTERACTIONS ARE COMBINED FOR OBJECT

LOCALIZATION. (B) LOCALIZATION ACCURACY IMPROVES SIGNIFICANTLY

WHEN LEARNING THE OPTIMAL EMBEDDING WITH MKLMNN.
THE BEST ACCURACY USING ONLY ONE KERNEL IS OBTAINED

USING REGION INTERACTIONS (GIST) FOR GRAZ-02

accuracy cannot be compared directly, the relatively lower lo-
calization accuracy can be understood as follows: even though
some segments are correctly classified, the resulting (merged)
segment fails to overlap significantly with the ground truth
bounding box.

For all combinations of features, we achieve better localiza-
tion accuracy for the classes bikes and cars than for the class
people, for reasons discussed earlier. Due to the presence of
cluttered backgrounds, boundary support conveys little useful
information in this database, as can be seen by comparing
the results for App and . The MKLMNN optimiza-
tion detects this phenomenon at training time, and correctly
down-weights pixel interactions where they are noninformative.
Fig. 10 shows examples of the localization of objects in test
images.

Since the Graz-02 data set has traditionally been used for
other computer vision tasks, no other object localization results
are currently available. Comparisons of our system to state-of-
the-art algorithms will be provided for the multiobject localiza-
tion task in Section IV-B.

3) Feature Combination: To gain a better understanding of
how the MKLMNN algorithm contributes to localization per-
formance, we repeat the localization experiment with different
methods of kernel combination. Table IV(b) compares the
localization accuracy obtained by MKLMNN to that obtained
by using the average kernel, as well as the space obtained by
optimizing the average kernel with KLMNN (Algorithm 2), and
the single best kernel (in this case, RI). MKLMNN achieves
significant improvements in accuracy over the unweighted
kernel combination, which performs worse than using the
single best kernel. We analyze the relative importance of each
kernel in forming the optimal embedding by examining the
learned weights . We observe that the solution is sparse,
since some examples are more discriminative than others for
nearest neighbor classification. Fig. 6(a) illustrates the sparsity
of the solution, and shows the kernel weights for each point in
the training set. Previous MKL methods generally learn a set
of kernel weights that are applied uniformly across all points.
MKLMNN, on the other hand, learns weights that vary across
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Fig. 6. Learned kernel weights for Graz-02. (a) Kernel weights for each point
in the training set, per kernel. (b) Kernel weights grouped by class.

points, so that a kernel may be used only where it is informative;
this is demonstrated by the fact that different training points
receive weight in the different kernel spaces. Fig. 6(b) shows
the learned weights grouped by class. Segments corresponding
to background examples receive greater weights for the appear-
ance features SIFT and SSIM than segments corresponding to
actual objects. This can be explained by the great dissimilarity
between examples in the background class.

Inspecting the kernel weights for each of the object classes
in more detail, we observe that appearance kernels are gener-
ally important, while region interactions mostly matter to dis-
criminate the object classes cars and people, capturing typical
geometric configurations between the background and these ob-
jects. Pixel interactions and color kernels receive low weights
across all object classes. The latter can be explained by the high

variability in color appearance for the objects in this database,
while the former is due to the high levels of clutter, which gener-
ally results in a nonuniform background making boundary sup-
port relatively uninformative.

4) Implementation Details: For Graz-02, we use the data
split of [36] for training and testing. We compute multiple
stable segmentations, consisting of respectively 2, 3,…, 9, and
10 segments per image. Together, this results in 54 segments per
image. MKLMNN is trained using the 250-nearest neighbors,
and the parameters and are found using cross-validation.
For -kernels, the bandwidth is fixed a priori at . For the
experiments comparing diagonally constrained and full ,
the same values of the hyperparameters are used.

B. Multiple Object Localization

To evaluate our framework for multiobject localization, we
use the MSRC [37] and PASCAL 2007 [38] databases. These
databases present 21 and 20 different object classes, respec-
tively, with images that contain several object instances from
multiple classes, as well as occlusions, extreme variability in
pose, scale and lighting.

1) Object Detection: Localization accuracy is computed,
again, by following the evaluation procedure of [38]. Table V
(top) shows the mean accuracy results for MSRC with dif-
ferent combinations of appearance (App) and contextual
interactions—pixel interaction (PI), region interaction (RI),
and object interaction (OI). We observe that using only ap-
pearance information (App) results in a mean localization
accuracy of 50%, while including local contextual interactions

improves accuracy to 70%. Combining
all local context features performs similarly
to using appearance only, suggesting that object classes could
potentially be learned from cues that don’t include appear-
ance information [42]. If only pixel or region interactions are
combined with appearance features ( or ),
accuracy already improves over using appearance alone, where
adding RI realizes a larger improvement than adding PI.

Note that the object interaction model depends directly upon
the estimated labels , so a more accurate estimate of

allows the CRF to contribute better to the final localiza-
tion accuracy. The segment-merging SVM predicts same-object
segment pairs correctly 81% of the time, and contributes con-
structively to the localization accuracy without making a sig-
nificant difference: omitting this step only reduces localization
accuracy by approximately 1%.

We repeat the experiment on PASCAL07, and, again, evaluate
the localization accuracy and the contribution of the different
contextual interactions. Table V (bottom) shows the results for
combining appearance with different levels of local context. As
for MSRC, combining appearance with all contextual interac-
tions improves the mean accuracy dra-
matically: in this case, from 26% (for appearance only) to 39%.
Pixel interactions account for the largest individual gain, im-
proving accuracy from 26% (App) to 33% . For
PASCAL, we observe that the segment merging step correctly
predicts same-object segment pairs 85% of the time, and con-
tributes constructively without making a significant difference.
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TABLE V
MEAN LOCALIZATION ACCURACY FOR THE MSRC AND PASCAL07 DATA SETS.
APPEARANCE (APP), PI, (RI), AND (OI) ARE COMBINED FOR OBJECT LOCALIZATION

Fig. 7. (a) Examples from MSRC (left column). (b) Examples from PASCAL
07 (right column). The background in most MSRC images is segmented and la-
beled with one or more specific object classes, like, e.g., sky, road, and building.
In PASCAL images, the background lacks such structure, and is generally unla-
beled. Background structure allows region interactions to incorporate more con-
sistent information from neighboring (parts of) objects in MSRC, compared to
PASCAL. Moreover, this increases the number of object classes which co-occur
in an MSRC image, enabling object interactions to make a greater contribution
to localization than in PASCAL.

As in the MSRC experiment, omitting the segment merging step
reduces localization accuracy by approximately 1%.

Comparing both data sets, we notice that the different con-
textual interaction levels contribute differently to localization in
the different data sets. For example, for PASCAL, adding object
interactions ( versus ) im-
proves localization accuracy by only 2%, compared to the 4%
improvement for MSRC. This is not surprising, since MSRC
presents more co-occurrences of object classes per image than
PASCAL, which provides more information to the object in-
teraction model. Region interactions also contribute more in
MSRC where the background tends to exhibit more structure,
due to the presence of specific background classes in the scene,
i.e., sky, grass, water, road, and building. Fig. 7 illustrates these
differences.

2) Feature Combination: Table VI shows that for both
MSRC and PASCAL, learning the optimal embedding with
MKLMNN again results in substantial improvements over
the average kernel (native or optimized), and the single best
kernel. For MSRC, we achieve 66% localization accuracy with
MKLMNN, compared to 54% when optimizing the average
kernel with KLMNN. Similarly, in PASCAL we observe 37%
with MKLMNN, compared to 25% for the average kernel.

TABLE VI
BOTH FOR MSRC AND PASCAL07, LOCALIZATION ACCURACY

IMPROVES SIGNIFICANTLY AFTER LEARNING THE OPTIMAL EMBEDDING.
THE BEST ACCURACY USING ONLY ONE KERNEL IS OBTAINED

USING SIFT FOR MSRC AND RI (GIST) FOR PASCAL

To analyze the relative importance of each kernel in forming
the optimal embedding, we examine the learned matrices.
As with the Graz-02 data set, the solution is sparse, which,
again, can be explained by some examples being more discrimi-
native than others for kNN classification. Figs. 8(a) and 9(a) de-
pict the sum of the weights assigned to each kernel for MSRC,
respectively PASCAL07. We observe that SIFT and PHOG are
the most important kernels for both data sets, and that color-
based kernels receive relatively more weight in MSRC than in
PASCAL. The latter is explained by the presence of background
classes in MSRC such as water, sky, grass and tree which tend to
be more homogeneous in color and, therefore, can be more effi-
ciently described using a color kernel. PASCAL, on the other
hand, lacks these homogeneous background classes, and, in-
stead, contains more “man-made objects” where color features
exhibit higher variance and less discriminatory power.

Figs. 8(b) and 9(b) illustrate the learned weights for each
kernel, grouped by class. This demonstrates the flexibility of
our multiple kernel formulation. Kernel weights automatically
adapt to the regions in which they are most discriminative, as
evidenced by the nonuniformity of each kernel’s weight distri-
bution. Contrast this with the more standard kernel combination
approach, which would assign a single weight to each kernel for
the entire data set, potentially losing locality effects which are
crucial for nearest neighbor performance.

This allows us to examine which features are active for each
class. For example, as shown in Fig. 8(b) for MSRC, color ker-
nels are selected for points in the classes building, cat, face,
grass, road, sky and tree. With respect to contextual kernels,
body, face, and water give importance to pixel interactions, but
not region interactions. In the particular case of the class face,
this effect is explained by the fact that faces are often surrounded
by (dark) hair.

Similarly, in PASCAL, classes such as boat, bottle, chair, and
motorbike get weights for pixel interactions and not for region
interactions [see Fig. 9(b)]. This is easily explained for boats,
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Fig. 8. Learned kernel weights for MSRC. Context gist (CGIST) corresponds to region interactions (RI) and context color (CCOLOR) corresponds to PIs. (a) For
kernel � , its total weight is ���� �. (b) Weights grouped by class.

Fig. 9. Learned kernel weights for PASCAL. CGIST corresponds to RI and CCOLOR corresponds to PI. (a) For kernel� , its total weight is ���� �. (b) Weights
grouped by class.

which are surrounded by water, for which color is highly infor-
mative. Region interactions get some weight for the classes bike,
bus, sheep, and train, as objects in these classes are often found
in the proximity of other specific objects. For example, bike ob-
jects are often overlapped by person objects. Fig. 11 shows ex-
amples of localization where the different context levels help to
improve this task.

3) Comparison to Other Models: To compare our model
to the current state-of-the-art, we compute the detection accu-
racy per class. Table VII shows the per-class accuracy for some
of our models, corresponding to different combinations of ker-
nels, and the contextual model from [2], which is the current
state-of-the-art for object localization on MSRC. The MSRC
data set has been studied as well for object segmentation, e.g.,
by models such as [11], [17]. Since this is an essentially dif-
ferent task, with different evaluation metrics, no comparison is
made to these segmentation approaches. We outperform [2] for
half of the classes, and obtain higher average accuracy overall,
demonstrating the benefit of combining different contextual in-
teraction levels.

For the PASCAL data set, we compare our model (All) to
the current state-of-the-art algorithm for object localization on
this data set [2], as well as the best performing system in the
PASCAL09 challenge object detection [24] (for which the test
set is not publicly available yet), and one other context-based
approach [4]. Table VIII shows the per-class localization accu-
racy, where the bottom line provides the best localization result
obtained for each object class in the PASCAL07 challenge [38].
We notice that our model performs best in the largest number of
classes (tied with [2]), and we achieve a higher mean localiza-
tion accuracy.

Our multiple kernel framework for learning a single metric
over all classes outperforms models which learn class-specific
kernel combinations [4], [24]. This owes to the fact that our em-
bedding algorithm is geared directly toward multiclass predic-
tion, and information can be shared between all classes by the
joint optimization. Moreover, models in [4], [24] report only
modest gains over the unweighted average of base kernels, while
our model achieves significant improvement over both the av-
erage and best kernels. This suggests that convex combinations
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Fig. 10. Examples of images from the Graz-02 database. Images (first row), ground truth labels (second row) and detections (third row) are shown. For images
showing ground truth labels (second row), red areas correspond to visible parts of the object and green indicates occluded parts. For detection results, green
areas correspond to correct detections by our framework and red areas corresponds to false detections. (a) Examples of localization results for the category bikes.
(b) Examples of localization results for the category car. (c) Examples of localization results for the category people. (d) Examples of false localizations for the
classes bikes (top) and people (bottom).

TABLE VII
FIRST THREE ROWS: LOCALIZATION ACCURACY FOR OUR SYSTEM USING APPEARANCE ALONE (A), USING APPEARANCE TOGETHER WITH PIXEL AND REGION

INTERACTIONS �� � ��, AND USING APPEARANCE WITH ALL CONTEXTUAL LEVELS, I.E., PIXEL, REGION AND OBJECT INTERACTIONS (ALL). THE LAST

ROW PROVIDES THE PER-CLASS LOCALIZATION ACCURACY OBTAINED BY THE CONTEXTUAL MODEL IN [2], THE CURRENT STATE-OF-THE-ART FOR OBJECT

LOCALIZATION ON MSRC. RESULTS IN BOLD INDICATE THE BEST PERFORMANCE PER CLASS. OUR SYSTEM ACHIEVES THE BEST AVERAGE ACCURACY

TABLE VIII
COMPARISON OF LOCALIZATION ACCURACY FOR DIFFERENT SYSTEMS ON THE PASCAL 07 OBJECT CLASSES. RESULTS IN BOLD

INDICATE THE BEST PERFORMANCE PER CLASS. THE BOTTOM LINE PROVIDES THE BEST LOCALIZATION RESULT OBTAINED

FOR EACH CLASS IN THE PASCAL07 CHALLENGE [38]. OUR SYSTEM (ALL) ACHIEVES THE BEST AVERAGE ACCURACY

of kernels may be too restrictive, while our approach of concate-
nated linear projections provides a greater degree of flexibility
to the model.

4) Implementation Details: The data split from Galleguillos
et al. [2] is used for MSRC evaluations. For PASCAL07, we
follow [38] and train models based upon 30 images per object
class. Multiple stable segmentations [27] are computed—9 dif-
ferent segmentations for each image—each of which contains
between 2–10 segments. This results in 54 segments per image.

The computation time for one segmentation is between 60–90 s,
resulting in an average of 10 min of computation time to obtain
all stable segmentations for one image. As the individual seg-
mentations are independent of one another, they could also be
computed in parallel, to improve computational efficiency. For
the spatial smoothing step, one SVM is trained for each data
set, using the SVM implementation [43] with RBF kernels
for the classification task. For the MSRC data set, 994 positive
and an equal number of negative pairwise examples are used for
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Fig. 11. Examples of images from the MSRC database. Each labeled colored region corresponds to an object localization result performed by our framework.
(a) Localization example where pixel interactions improve localization using appearance. (b) Localization example where region interactions improve localization.
(c) Localization example where pixel and region interactions together improve localization. (d) Localization example where object interactions improve localization
over different feature combinations.

training. For PASCAL07, 350 positive and 350 negative exam-
ples are used. Each training example is described by a 2120-di-
mensional vector, as explained in Section II-D. Hyperparam-
eters for each SVM are determined by 3-fold cross-validation
on the training data set. We train MKLMNN with 15 nearest
neighbors. For MSRC, the parameters and are obtained
with two-fold cross-validation on the training set. The results
are stable for a variety of choices of between 5–15; we se-
lect . For PASCAL07, the best , and are selected on
the PASCAL07 validation set and then applied for testing on the
test set. The parameter for the -kernels is set to 3. The com-
plexity of MKLMNN scales with the number of training points
and the number of neighbors to consider in the constraints. On
an Intel 2.53 GHz Core Duo with 4 GB RAM, training time is
35 min with 900 training points (comparable to the number of
training segments for MSRC, and for PASCAL07), 15 nearest
neighbors, and a diagonal constraint on . Predicting the soft
labeling for all segments in a test image takes under a second
(after segmentations have been computed). For the CRF, hy-
perparameters are determined by two-fold cross-validation on
the training set. Training the CRF takes 3 min for MSRC (315

training images) and 5 min for PASCAL07 (600 training im-
ages). At test time, running the CRF to obtain the final labeling
takes between 2–3 s, depending upon the number of segments.

V. CONCLUSION

In this work, we have developed a novel framework for opti-
mally integrating multiple feature descriptors into a single, uni-
fied similarity space. By learning a single space which is op-
timized for nearest neighbor prediction, we are able to quan-
titatively compare the contributions to the learned space due
to each base feature descriptor. In particular, we evaluated the
importance of various contextual cues at the pixel, region, and
object level for object localization tasks. Moreover, the pro-
posed MKLMNN algorithm yields interpretable solutions, and
achieves significant improvements over current state-of-the-art
contextual frameworks.

APPENDIX

GRADIENT DESCENT DERIVATION

To solve the optimization problem listed as Algorithm 3,
we implemented a gradient descent solver. We show here the
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derivation of the gradient. We first eliminate the slack variables
by moving margin constraints into the objective

where

and

otherwise

is the hinge-loss function. We can now derive the gradient of the
objective with respect to in three pieces, corresponding to
the three terms , , .

By the cyclic property of the trace, a distance
can be expressed as a matrix inner product

It follows that the gradient for the first term is:

Although is nondifferentiable at 0, we can write down a
subgradient for as follows:

where is the indicator function of the event .
Finally, the gradient for the regularization term is simply

By linearity, the (sub-)gradient of the objective function is the
sum of these three (sub-)gradients. After each gradient step,
the updated matrix is projected back onto the PSD cone
by calculating its spectral decomposition, , and
thresholding the eigenvalues: . When
each is restricted to be diagonal, the decomposition step
is unnecessary since the diagonal elements contain the eigen-
values; diagonal PSD projection can, thus, be accomplished by

.
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